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So, moving on. So, when you start bringing in many atoms close to each other then start

creating solids, you could end up with different kinds of arrangements. And depending

on the if you classify them in terms of their order of arrangements, you end up with

things  called  as  mono  crystalline  or  crystalline  solids,  poly  crystalline  solids  or

amorphous solids ok. And what are these? 

Crystalline solids are solids where the atoms are arranged periodically, throughout which

means that for infinitely long distances there is complete periodicity in the arrangement,

of the complete irregularity in the arrangement of atoms, they perfectly well arranged ok.

So, if you look at the distance between these bonds it is all the same throughout ok.

So, for example, this bond length will be the same between one plane to the other that

bond length will be the same from one plane to the other etcetera. And in fact, they form

such a nice grid of points that we could define a vector system or a coordinate system on

this grid. So, if you if you were to define basis vectors, let us say a one a 2 and a 3 for a 3

dimensional  space  then  any  point  on  the  any  crystal  or  lattice  point  ok.  So,  this



crystalline arrangement is something called as a lattice. And any atom occupying a lattice

any lattice point which is basically an atom in the lattice, can be defined using these 3

orthogonal vectors ok. So, it is a linear combination of these vectors, where you have

alpha 1, alpha 2, alpha 3 of constant coefficients. And this vector r is basically a linear

combination of these orthogonal vectors. So, it is a very geometrically pleasing structure.

The poly crystalline structure is a little off, in the sense it is not that perfectly crystalline.

The  polycrystalline  structure  in  fact,  has  got  little  tiles  that  are  perfectly  crystalline

within the tile, and the size of each tile is the order of microns. So, let us say 10 microns.

And you have different tiles, which have got which are within themselves crystalline, but

the type of crystallinity changes. So, for example, the orientation of the crystalline cleans

will  be different  ok.  So, for example,  within this  little  tile,  this structure is perfectly

crystalline, but the crystallinity holds true only for this distance of about a few microns. 

And then you have another tile that starts and you have a different nature of crystallinity

within the other tile. And these tiles are all separated these tiles are all called grains and

these grains are all separated by grain boundaries ok. So, this is something called as a

poly crystalline material and if you go to the other end of the spectrum. So, if we had

crystalline and then we have poly crystalline which is somewhere in the middle the other

end is a completely disordered structure, which is there is almost no periodicity at any

scale level. And even if there is periodicity it is only of the order of a few atoms long and

this is something called as an amorphous material.  So, classic amorphous material  is

glass. So, these materials also called glasses.

So, in amorphous materials the atoms have no periodicity what is so ever. So, the bond

lens between the different atoms will be different, their bond angles will be different and

so on ok. So, it is a very extremely defective structure. And the and it is got immense

consequences with regards to the distribution of energy levels, and you know the nature

of band gaps etcetera and in our course we will look at crystalline materials ok.
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 it is helpful for us to study the geometry of these crystals. So, for example, let us study

the distance between 2 crystal planes, which let us say is called d. Now a very powerful

experimental  technique  to  do that  is  something  called  as  electron  diffraction  from a

crystal or which is also called as Bragg’s diffraction.

So, what is done is, the crystal is placed inside a system and the system puts out a very

high energy electron beam, and makes it incident on the crystal. Let us say you have 2

rays of this beam ok. So, let me just turn draw this a little better. So, you have an high

energy electron beam that is made incident on this crystal. And 2 rays of this incident and

these of these beam tend to diffract because they are passing through this difference in

the 2 lattice planes through this gap here, which is got a width of d. So, these electron

beams are going to diffract and by placing a screen we would obtain an intensity pattern

due to this diffraction. And by looking at this intensity pattern, one can identify whether

this material is truly crystalline what the crystal spacing is etcetera.

So, firstly, let us just break down this entire experiment. So firstly, why do we need a

high energy electron  beam why cannot  I  just  use visible  light  to  study the  distance

between crystal plates. So, the crystal the distance between crystal planes the order is of

the order of few angstroms ok. So, let us just say one e minus 10 meters. So, that is the

order of the distance between the planes, but visible light has got a wave length which is

about 4000 angstroms to about 7000 angstroms. So, it is about thousands of times larger



than this distance. So, it is not possible for this large wavelength electromagnetic wave to

resolve such a fine distance.  And therefore,  we need to use an electromagnetic  wave

which has got a wavelength of the order of one e minus 10 meters. And how is that done

it is done by using an electron gun, for example, and firing the electrons off at very high

momentum ok.

Because if you add a lot of energy to the electrons you increase the energy implies you

increase the momentum and due to Bragg’s law if an ink the momentum is increased the

wavelength  of  the  electrons  will  go  down.  And  therefore,  we  can  get  very  small

wavelengths by having very large momentum in the electron beam. So, you use high

energy electrons to study the crystal plane. So, this high energy electron is made incident

on this plane. So, let us say the angle of incidence here is theta, it is not the angle of

incidence, but it is the angle at which it abeyances off the plane it is theta. And you have

your another ray which comes in like this ok. Now these 2 rays are going to interfere and

create this intensity pattern.

Now, what is the condition for constructive interference? So, if you have let us say one

wave that looks like this, and another that looks like this. So, let us just mark 2 points on

this let us say A and B. So, since the peaks which are defined by A and B are at the same

location, we could say that these in waves would interfere constructively. But now let us

say we translate the second wave be translated by half a wavelength down. So, B now

comes to this point. So, this is down by half a wavelength. 

Now clearly the peak of this wave is at the same location as the valley of the other and

therefore, you will have destructive interference. So now, if you translate this wave a

little bit more by another half lambda, the peak of this wave has now shifted by another

lambda by 2. And therefore, the distance the total translation has been one lambda that is

one wavelength, and you will again have constructive interference.

So,  you have  constructive  interference  only  when the path difference  between the 2

waves or the if you want to think in terms of phase difference is also ok, but the path

difference between the 2 waves should be an integer times lambda. It is only then that

you will have constructive interference. So, what is the path difference between these 2

rays? So, let us draw a facet here you know it is sort of perpendicular to this and then

other facet, or another plane here which is perpendicular. So, till this point both these



rays travel the same distance exact same distance. And beyond this they are going to

travel the exact same distance to the screen, but it is only this way, this ray has travelled a

little more than the other in this region. So, this is the path difference this is the path

difference between the 2 rays, it is only this little distance here and what is that distance.

So, we just use trigonometry to identify that. So, we have this little structure and this is

the  path  difference.  And  the  hypotenuse  of  these  2  triangles  is  d  the  crystal  plane

difference and you can easily  find out that this is theta  and therefore,  this  point this

distance here is d sin theta, and that distance there is also d sin theta therefore, the total

path difference is 2D sin theta. So, the condition for constructive interference is that 2D

sin theta d equal to n times lambda ok. 

So, that is that is given here. So, this is the condition for constructive interference and

this is something called as the Bragg’s condition. So, by keeping this crystal inside the

system and by impinging an electron high energy electron beam on it, and by changing

the value of theta one can get an intensity versus theta plot. And from that plot it  is

possible to identify whether the material is a crystalline material and you know if it is

then what is the distance between the planes and etcetera. So, it is a very powerful tool to

study crystals.
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So now coming to the defining the crystals themselves. So, we will just go through a few

definitions it is not really fundamentally important from the point of view this course, but



nevertheless it is useful to know these things. So, let us say you have a 2 dimensional

crystal lattice as shown here ok. So, let me make something that is that is simple in case

it is not visible. So, let us say you have a 2 dimensional crystal lattice. Now what are the

different ways in which I can define this crystal space ok. So, the first thing is to identify

the most fundamental structure that can define this crystal space. And there are 2 ways to

go about it, the first is to define something called as a unit cell ok. 

So, what is a unit cell a unit cell is essentially any building block that is composed of

making a polygon let us say out of the out of these lattice points. Such that when this

building block of in this geometrical entity is repeated again and again it can be used to

fill up the entire lattice plane without having any gaps etcetera ok. So, this entity can be

used to fill up entire lattice plane. So, for example, this could be a unit cell this could

also be a unit cell. So, both these are possibilities for a unit cell. So, a unit cell is not

unique you could have many units different kinds of unit cells. So, that is what a unit cell

is. And if you want to locate the number of atoms in the unit cell, you know how many

atoms are present in a unit cell what we have to do is we count the number of atoms and

also watch out for the number of unit cells that are sharing those atoms ok. So, let us do

an example and then it will become quite clear. 

So, let us take a unit cell of this kind ok. So, it is you have you have a unit cell which is

got a structure like this. So, this can be periodically used this can be used again and again

to completely cover the entire lattice space. And your lattice space is composed of all

these atoms which are drawn as these little solid circles. So, let us take this unit cell let

me just fill up the space all around. So, that it becomes easier. So, let us take this unit

cell. So, if you need to find out how many atoms are present in that unit cell, we see that

there are 4 atoms of the vertices and there is one atom right here in the middle.  So,

therefore, it appears that there are 5 atoms, but then we need to be careful because this

atom is already shared by 4-unit cell. So, this atom is equivalent to one 4th of an atom

because it is shared by 4 unit cells. And how many of these kinds we have we have for

such corner atoms we have this one we have this we have this in here.

So, we have 4 corner atoms vertex atoms and each of them are shared by 4 unit cells.

And therefore, they are effectively one, but there is one in the middle which is shared by

just one cell right, which is which only belongs to this particular unit cell and it is not

shared by any cell. So, it is only belongs to that cell and therefore, there are total of 2



atoms in this unit cell ok. So, that is the way you calculate the total count and I think if

you practice this you will obtain it or you will you will get better at this, but it is really

not really important for this course, but nevertheless it is good to know.

Now, the other definition is something called as a primitive cell and what is the primitive

cell a primitive cell is simply the smallest possible unit cell. Or if you want to quantify it

the number of atoms in a primitive cell has to be one ok. So, for example, if you go back

to our lattice we defined our unit cell as that and the number of atoms were 2, because

there were 4 here and there is one in the middle. So, this cannot be a primitive cell a

primitive cell has to be something smaller it has to be the smallest possible unit cell. And

that is possible by having a unit cell that looks like this. For example,. So, if you have a

unit cell that looks like this how many atoms does this unit cell have it has got 4 in the

corner, but these 4 are shared by 4 other cells and therefore, there is a total of one atom

per unit cell. So, this is a good definition of a primitive cell.

So, once again if you were to take a primitive cell, and tile up all the primitive cells next

to each other you should be able to fill up the entire lattice space.
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Now, heading towards 3D; so, if you go from 2D to 3D there are different kinds of lattice

structures ok, and they can be classified in to very distinct types and there are basically 5

distinct  classes for 2D lattices  and there  are  4,  14 distinct  classes for 3 dimensional

lattices and these are called as the Bravais lattices. So, some simple structures ok, which



is useful to know for 3D are something called as a simple cubic the body centered cubic

and the face centered cubic.

So, what is a simple cubic? A simple cubic is simply a cube with the atoms all sitting on

the vertices of the cube. So now, if you have to go through your example and say identify

the number of atoms. So, this is a one this is one kind of a 3 dimensional unit cell. So,

what is the number of atoms in this 3D unit cell? It is you have 8 atoms on the vertices,

but each of these atoms are shared by 8 other unit cells.  And therefore,  there is one

effective cell per simple cubic unit cell. What about the body centered cubic? A body

centered cubic has got 8 vertices just like the simple cubic structure, but it is also got one

atom right inside the body. And therefore, the total number of atoms are going to be 8

into 1 by 8 plus that one which is not shared by any other cell. 

So, which is 2 and the third is a face centered cubic structure, which is basically got your

8 corner atoms just like a simple cubic, but then on the centre of every face you also have

one atom present. So, this is a side face and you have one that is a face on the table that

is another and so on. So, what are the total number of atoms. So, if you think of this face

atom it is going to be shared by 2 unit cells. So, you will have both these unit cells

sharing that atom. So, you have 8 corner atoms shared by 8 unit cells, plus 6 face atoms

shared by 2 unit cells. And therefore, you have a total of 4 atoms per face centered cubic

unit cell.
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Now, particularly with regard to crystal silicon which is going to be our model of study,

what is the silicon structure like you know just to just to give you an idea. So, here is a

typo.  So,  you let  us  ignore  that  structure  for  now although  the  general  geometry  is

correct, it looks like there are different kinds of atoms there. So, silicon structure only

has silicon atoms and a simple way to draw it is it is basically 2 phase centered cubic

structures which are sort of inter woven ok. And we will I will explain that, but a simple

way to draw it is to simply draw a tetrahedral arrangement of atoms. And then continue

drawing tetrahedral arrangements of atoms. So, you will end up with a diamond structure

and then this will have it is own this will have it is own tetrahedron and so on.

So, that is the way you could you could possibly draw a silicon lattice, but then if you

think of this picture here ok. So, what this picture tells you is you are looking at the

silicon unit cell from the top ok, and these numbers that are written here I pointing out

that there is an atom in that x and y. So, let us let us keep this as the y coordinate and the

x coordinate. So, you are seeing x and y coordinate at the cell and this number here is the

z coordinate of the system it is telling you the height of the atom from the floor. So, if

you had to draw the say z, x and y what this is telling you is first let us look at these look

at these 5 atoms ok. So, it is telling you that you have 5 atoms sitting right on the floor.

And they are like a face centered cubic arrangement. And then let us look at these atoms

which are on the sides.

So now we can construct the side walls that have got a certain height. And there are

atoms sitting at the midpoint on these walls which are there on the side faces and this

roof of the cell is basically the floor of the next cell. So, this structure repeats. So, this is

at 0 1 the roof would be at one and therefore, it is a face centered cubic you see the first

face centered cubic, but there is an also some of the atoms that we have not yet counted.

So now, let us look at these atoms here the 3 by 4 the 1 by 4. If you were to sort of

continue these atoms you will  find that you know this arrangement  can be extended

throughout, and these are your other interwoven what you say face centered structures

ok. So, you have these 2 interwoven arrangements that form your silicon lattice it is it is

good to just spend some time and imagine it what we talk about.



(Refer Slide Time: 23:41)

Now, is something called as a packing or the effectiveness of packing in a crystal. And in

particular we define a factor called as a packing fraction in a crystal which tells you

which gives you a ratio of the volume occupied by the atoms to the volume of the unit

cell.

Now, the unit cell depending on the kind of a unit cell taken, and depending on the size

of the atoms and their  and the kind of and the kind of packing of these atoms, it  is

possible that there are some spaces in the unit cell or the volume of the unit cell might be

larger than the effective volume of the atoms. Or you know the unit cell might be very

efficiently  packed.  So,  how does  one  determine  you know this  kind  of  the  packing

efficiency in unit cell? It is given by this packing fraction. So, let us just take an example

and by just solving example you know the message of this packing fraction would be

very, very clear.

So, let us take a face centered cubic. So, what is the face centered cubic you have a cubic

unit cell you have 8 atoms on the vertices and on the centre of each phase you have a

separate atom by itself. So, how many atoms do we have in this unit cell per unit cell,

you have 8 corner atoms and each of these 8 atoms are shared by 8 other unit cells. And

therefore, it is 8 into 1 by 8 plus 6 face atoms and each phase atom is shared by 2 unit

cells and therefore, the 6 into 1 by 2 which is equal to 4 atoms. So, there are a total of 4

atoms per unit cell in the face centered cubic crystal, but now instead of just drawing the



atoms as little dots let us actually define a radius for each atoms. Let us say that the each

atom has got a radius which is which is got a radius of r. So, the volume of each atom is

4 by 3 pi r cube. And there are a total of 4 atoms an effect ml for effective number of

atoms per unit cell. And therefore, the total volume of the atoms occupying this unit cell

is 16 by 3 pi r cube.

(Refer Slide Time: 25:51)

Now, so, let us draw this picture here. So, here is the top face of the cube. So, let us say

the top face of this face centered cubic structure. So, you have one atom there and that is

the next face centered cubic structure, you have another atom here you have yet another

atom there. You have yet another atom here and that is your crystal structure. So, you are

seeing the top of everything. So, if you look at only this unit cell you find that it  is

packed in this particular manner you have one face centered atom which has got which

has got a diameter 2r. And you have all the other corner face centered cubic which are

being shared which have all got an effective radius of r.

Now, therefore, given this definition of r, can given that all these atoms are not touching

each  other,  and  they  have  they  have  all  packed  into  this  unit  cell  in  this  particular

manner. Can we define the length of the of this square what is this length a ok? So, what

is a? A can be easily defined in terms of r, and you find that your A is nothing but 2

square root of 2 square root 2 of r. And therefore, the volume of the unit cell which is

basically a cube of each side having length A is a cube. And a cube can be defined in



terms of r because of this relation. So, you find that the volume of the unit cell is 16

square root 2 r cube and therefore, the packing density is the total volume of the atoms

occupying this unit cell divided by the total volume of this cube and it turns out to be

about 0.74 for a face centered cubic crystal.  So, that is something called the packing

density ok.

So, it is again something that is not going to be useful in this course, but having said that

it is quite important because it determines. So, let us say this is the face across which you

are going to have all your electron transport ok. So, let us say this is the face of the

semiconductor  on which  you are having electron  transport.  So,  this  packing fraction

determines the nature of the interaction of the electron with the crystal. So, the surface of

the crystal and the arrangement of atoms on the surface of the crystal where the electron

is going to move across does definitely impact the properties of the charge transport

properties of charge transport and therefore, determines the current etcetera.
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Now, we now come to the last bit of the course. And before we just drop off ok, I just

want to define 3 ideas these ideas are again something that we will not be using in the

rest of this course. So, it is all right for the students to completely skip these 3, but I feel

that these are 3 critical ideas that provide a deeper insight. And the first idea is basically

a geometrical construction. And it is something called as a Wigner Seitz cell. So, let us



say you have and how do you how do you perform this geometrical constructions let us

say you have a lattice ok. So, let us say these are the atoms of your lattice. 

Now let us take any one atom in the lattice. So, let us take this particular atom here we

will first draw lines, as shown by these dotted lines we will draw lines that connect this

particular atom to the nearest neighbours. So, these are the nearest neighbour atoms and

we are simply drawing lines that connect this atom to the nearest neighbours. So, that is

the first  step in this  geometrical  construction.  Next what we do is  we will  draw the

perpendicular bisectors to these lines. So, let us take this particular dotted line. So, what

is the perpendicular bisector it is the line it is another line that divides this line 2 equal

parts and intersects it at 90 degrees. So, we have that to be the perpendicular bisector to

this particular line.

So, we now construct perpendicular bisectors to each of these dotted lines, that connect

the atom that we have chosen to the nearest neighbouring atoms in the lattice. So, we

have  all  these  perpendicular  bisectors  that  are  shown here.  And  these  perpendicular

bisectors would all intersect they would all meet each other you see these bisectors. So,

you see this bisector is meeting this one this bisector is meeting this one etcetera and all

these perpendicular  bisectors  will  therefore,  enclose a  certain space,  you see there is

there is if you were to draw this enclosure. So, which I am going to draw this very thick

line here they would enclose this certain space. And they would basically create a cell ok.

So, this enclosure by all these perpendicular bisectors creates this kind of a cell and this

cell is something called as the Wigner Seitz cell.

So,  you  started  off  by  taking  picking  an  atom  drawing  lines  to  the  nearest  atoms

constructing perpendicular bisectors and taking the inner shell that that is enveloped by

all these perpendicular bisectors. So, this something called as a Wigner Seitz cell it is

simply a construction, a geometrical construction. So, that is the first idea. Ok now this

connects to another idea.
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 So, the second idea is something that is got to do with the reciprocal lattice space a very

simply put you know do not worry about all these this mathematics. You can I will tell

you  what  that  is,  but  do  not  worry  about  it  reciprocal  lattice  space  is  essentially  a

frequency space. So, let us say you have a periodic crystal you have got you have got

atoms arranged in some period. So, it is got a periodic wavelength it is got some spatial

period to it.

Now, what is the frequency it is essentially 1 by the spatial period. So, if it is a 1 by a

could be considered to  be the frequency. So, if  you were to take the spatial  Fourier

transform of the real space you will end up with the in the frequency space and that

frequency  space  is  called  as  a  reciprocal  lattice  space.  So,  as  essentially  a  Fourier

transform that connects the real space to the frequency space ok. So, essentially the idea

behind what a reciprocal lattice spaces. 

Now if you have a crystal if you have a perfect crystal in the real space and you take a

Fourier transform you will end up with another with another periodic arrangement of

points in the reciprocal lattice space, and that will also be a crystal. Although, it need not

be the same kind of a crystal and the way you translate between real space to reciprocal

lattice space is if you were to define basis vectors in the real space say a 1 a 2 and a 3.

Such that any lattice point in the real space is a linear combination of these 3 orthogonal

basis vectors. Then the reciprocal lattice space will also have basis vectors b 1, b 2, b 3



and they will all be connected to the real lattice space vectors in this particular fashion

ok.

So, essentially you will find that in the 3D case it is basically this cross product divided

by the volume of these cells was a very brief introduction to reciprocal lattice space.
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If  you were to take these 2 ideas,  you have the Wigner  Seitz cell  and you have the

reciprocal  lattice  space  and  the  reciprocal  lattice  space.  So,  Wigner  Seitz  cell  was

construct was a geometrical construct constructed on real lattice space. So, you took the

lattice you had these lattice atoms. So, we are talking about real space which means x is

measured in meters ok. 

And we constructed a Wigner Seiz cell by drawing all these perpendicular bisectors in

real  lattice space and then we defined something called as a reciprocal  lattice space,

which is also a lattice, but it is all in 1 by meter ok. So, it is all the frequency domain it is

the  spatial  frequency  domain  it  is  the  dimensions  are  all  1  by  meter  and  you  have

constructed another lattice here which is the reciprocal lattice. 

Now, if you were to apply the same geometrical construct in a reciprocal lattice that is

you  construct  a  Wigner  Seitz  cell  in  a  reciprocal  lattice  that  enclosed  boundary  is

something called as a Brillouin zone. Now the reason why I am introducing this topic is

that these Brillouin zones you see these are all perpendicular bisectors ok, to these 2 pi



by a 2 n pi by a lines. And therefore, this Brillouin zone facets occur at points where we

are now in k space right we are in k space, we are all at you know 1 by meter that is the

reciprocal  or  the  frequency spatial  frequency domain  we are  all  in  k  space.  So,  the

Brillouin zone boundaries occur at points where k is pi by a 2 pi by a and so on where

integer times pi by a. So, that is where the Brillouin zones zone boundaries occur I am

only talking about linear spatial thing linear arrangement of atoms. 

So, if the Brillouin zone boundaries occur here, have you seen these points anywhere

else? So, we have seen these points somewhere else and those were the points where the

energy gaps occurred. So, when we drew the e k diagram after solving kronig’s penney

model we saw that the energy gaps or the discontinuities in energies occurred at pi by a 2

pi by a etcetera. So, therefore, the discontinuities are all occurring at the Brillouin zone

boundaries. And it so, happens that the entire idea of this energy gap formation can also

be explained by considering the diffraction of electrons at these facets ok. So, electrons

reflect off these zone facets and therefore leads to the formation of energy gap.


