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So,  we  now  do  realize  that  the  movement  of  the  electron  in  the  crystal  is  quite

complicated. The electron scatters through all the lattice atoms and it sort of makes its

way through the crystal and it gives you a feeling that it is moving at a constant velocity

which we said was the drift velocity. And this is in response to the applied electric field

in the crystal.

Now how do we quantify the drift velocity? It so happens that for low electric fields, the

drift velocity is proportional to the electric field for low electric fields and this constant

of proportionality is a quite an important parameter and that is something called as the

mobility.
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So,  let  us understand this  mobility  a  little  better  ok.  So,  we have now said that  the

movement  of  the  electron  through the  crystal  has  got  all  this  complex  physics  of  it

polarizing  the  atoms  and  its  scattering  with  the  lattice  and  its  scattering  with  any

impurities etcetera. And that movement of the electron in response to the electric field,

allowed it  to move at  some constant  velocity  and that  velocity  was called  as a  drift

velocity.  And  that  drift  velocity  was  related  to  the  electric  field  by  this  parameter

mobility which is mu. So, how does this parameter mobility relate or how does it connect

with the physics of all the scattering ok?

So, we see that the parameter this  mobility is a very strongly temperature dependent

parameter ok. It is very temperature dependent and why is that?. So, we now we consider

the different scattering mechanisms or the mechanisms by which the electron interacts

with the lattice and in particular we look at two kinds of scattering mechanisms: one is

the scattering with a lattice and the other is the scattering with the charged impurities in

the lattice. So, you have these silicon atoms in the lattice and as I mentioned these silicon

atoms are all vibrating around ok. So, although I am using the word silicon, it is true for

any semiconductor lattice ok.

So, these atoms are all vibrating around and they are all connected to each other because

of  all  the bonding and you have this  massive spring mass structure that  is  vibrating



because  of  the  thermal  energy. And we have this  electron  that  is  interacting,  that  is

scattering with all these vibrations. 

Now, since the source of this vibration or the cause of this vibration is temperature as the

temperature increases the vibration becomes more and more vigorous and the scattering

probability  also  increases  significantly.  Therefore,  it  is  expected  that  as  temperature

increases, the scattering of the electron with the lattice would also increase. And if one

were to define a mobility or the drift velocity of the carriers in response to the electric

field due to lattice scattering alone to the purely due to the lattice scattering. We will find

that the mobility decreases with the temperature and that relation is approximately given

as mu is to be proportional to T to the power minus 3 by 2. Of course, in reality you want

to extract this coefficient in a more empirical manner.

Now the electrons also interact with charged defects in the lattice and a good example of

charge defects is are ionized dopants and we will look at ionized dopants again in great

detail further down the course. So, let us just assume that you have the lattice and at

some place the lattice atom which is say silicon has been replaced by some other atom

which has actually got a charge. And therefore, the electron is moving through the crystal

and it tries and it interacts and it interacts with this charged ionized impurity. And that

scattering  is  also  temperature  dependent  ok,  but  it  is  got  a  different  argument  or  a

different kind of relation with temperature.

So, in this case it is quite important to see as to how much time the electron spends in

interacting with the charge defect. If the electron spends a long time interacting with a

defect, the scattering will be larger and the mobility will come down. But as temperature

increases as temperature increases, the velocity the thermal velocity of the electron also

increases. And therefore, since the electron has got a larger energy the electron gets past

this impurity without spending too much of time interacting with it ok. So, you might if

you would like to imagine it, you might want to imagine a very rapid interaction with the

with the impurity as the electrons sort of flies past in its vicinity. And therefore, as the

temperature increases the mobility due to it charged impurity scattering alone. So, if you

were to define a mobility and a drift velocity due to charged impurity scattering alone,

we will find that that mobility increases, because the electron is going to have a larger

velocity and its going to spend lesser time interacting with that impurity. 



 Now clearly  the number of such impurities  also matter. So,  as the  number of such

impurities increase or if the impurity concentration increases, it is more likely that the

electron  will  spend  larger  amount  of  time  interacting  with  these  impurities.  And

therefore, the mobility will go down as the concentration increases. So, the mobility is

said to be due to defect or charged impurity interaction is said to be proportional to T to

the power 3 by 2 divided by, where N is the concentration or the number of impurities

per unit volume of the semiconductor.

Now there could be many other scattering mechanisms. For example,  they you could

have  something  called  as  a  piezoelectric  scattering.  You  could  also  have  electrons

scattering etcetera and although we have not considered every scattering mechanism in

detail. Let us just say that all the other scattering mechanisms affect mobility which is

defined as u in this little expression as u other.

So, let us say there is a mobility due to all the other scattering mechanisms. So, these are

the  individual  definitions  that  we  gave  that  is  the  mobility  due  to  lattice  alone  is

proportional to T to the power minus 3 by 2. The mobility due to defects or charged

impurities alone is proportional to T power 3 by 2 by N ok. And then we could have

other  mechanisms  that  contribute  you  know  that  define  a  different  physics  for  the

electron interaction with the lattice.

So,  given  all  these  different  separate  impacts  on  the  electron  mobility,  what  is  the

effective mobility of the electron in the crystal? So, that effective mobility the calculation

is given by a very simple empirical formula which is got a small logical argument with

regards to you know how the electron interacts with lattice. And it is given by something

called as the Matthiesen’s rule which says that if you have these different individual

mobilities due to different mechanisms, then the effective mobility of the electron in the

semiconductor is given by is related to these different mobilities as 1 by mu effective is

equal to 1 by mu L plus 1 by mu D plus 1 by the mobility through any other mechanisms.

And this is something called as Matthiesen’s rule and it says in some sense it does make

some good predictions,  but it  need not always make accurate  predictions.  But it is a

useful method or an approach to know.



Now we said that the scattering with a lattice is dependent on acoustic vibrations or is

dependent  on  thermal  it  is  dependent  on  thermal  energy and  it  is  dependent  on  the

vibrations of the atoms in the lattice.
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So, since we are talking about the electron interaction with the lattice and in particular

land the vibrating atoms or the lattice sites, it is useful to define a concept of an entity

called as a Phonon. 

Now, it is the vibrations of all the atoms in the lattice that results in the scattering of

electrons and that results in one of the methods that determine the one of the phenomena,

the determine or limit  the mobility of the electrons in the semiconductor. Now these

atoms could be thought of or could be modelled as a large spring mass a networked

spring mass system and by looking at you know the vibration and the vibration modes of

all these atoms, one could write a set of this equations and differential equations that

included the displacement of all these springs ok. And you have a n atom periodic a

linear periodic arrangement of n atoms and we could sit down and write out a differential

equation that described this spring mass system.

Now as a consequence of such a differential equation it so, happens that the behaviour of

atoms  in  a  crystal  a  vibrating  due  to  due  to  a  source  of  external  energy, results  in

localized travelling waves in the crystal and these localized travelling waves of atomic

vibration in a crystal are is something called as the phonon ok. And therefore, since the



phonon is directly associated with the lattice vibration it is clearly going to be playing an

important role with regards to the thermal properties of the solid. For example, let us say

the thermal conductivity of the solid. So, therefore, the phonon can be thought of as the

particle equivalent of lattice vibrations. 

Now, since we are talking about vibrations we can make a direct connection or to the

harmonic oscillator which was the example we considered by looking at Schrodinger’s

equation and we saw that the energies in the harmonic oscillator were all quantized. And

therefore,  it  can be expected that  the lattice vibrational  energies in a crystal  are also

quantized or in other words the phonons can only take certain discrete energy levels or in

the phonon energies are also quantized.

Now off interest to us in this course is the interaction of the phonon with an electron

which  we  will  look  at  when  we  talk  about  thermal  recombination  generation

mechanisms.  But  a  clue  or  you know a  good indicator  to  what  this  interaction  of  a

phonon with an electron does is that, a phonon after interacting with electron does not

increase the energy of the electron too much ok. But it  is got,  but it  is it  is got the

potential to significantly affect the momentum of the electron ok. 

In other words, the energy E, if you look at think of an E K diagram, E K diagram which

we have already seen before an interaction with the phonon has got the possibility for the

electron to move a large distance in K space, but it does not have the ability to transit

much  in  the  E  direction.  And  this  plays  a  very  important  role  while  deciding  the

generation and recombination mechanisms of electrons in something called as an indirect

band gap semiconductor which he will come back to when we look at the generation of

carriers. 
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So, finally, we will take one more step to try and understand and model the concept of

mobility a little better. So, we have seen the way we have defined mobility so, far is that

we have said that the electron response to an applied electric field by moving by drifting

through the crystal and having a drift velocity v d which is equal to say some mu times

the electric field. And this was true for low electric fields and this mu was defined to be

the  mobility.  And  we said  that  this  mobility  is  essentially  governed  by microscopic

phenomena  such  as  the  electron  interaction  with  the  vibrating  lattice,  the  electron

interaction with charged defects etcetera. But let us say we would let us say that we want

to  quantify  the  mobility  and  develop  relations  that  are  a  little  bit  more  suitable  for

calculations and for modelling.

So, one approach to doing that is by using a concept called as the effective mass of the

electron and what I mean by this is.  Let us say you have you have electron moving

through the crystalline lattice ok. You have all the atoms in the lattice and the electron is

accelerating because the applied electric field, then it quickly scatters through the lattice

and then, it accelerates again quickly scatters and loses its velocity etcetera. So, because

of this very complex movement of the electron in the lattice, it is quite impossible for us

to use Newton’s laws of motion directly. But let us say that we really like to use a simple

model for the movement of the electrons. For example, we would really like to define the

force experienced by the electron as a rate of change is the momentum of the electron.

And try to use Newton’s laws, then we must make some arrangements or we must come



up with some models that have got some artefacts in it. And one such artefact one such

modelling parameter is something called as the effective mass. 

So,  we say that  the electron  in  vacuum has  a  mass  of  9.1 into 10 power minus 31

kilograms. But the electron in a crystal does not have this mass. We will not use this

mass because we want to develop a model that is very simple and that can describe the

movement of an electron in a in a crystalline solid in a manner that is very close to

Newtonian mechanics ok. And then we say that let q E be the force experienced by the

electron and that force is equal to the mass which is now not 9.1 into 10 power minus 31

kilograms, but by this effective mass of an electron which is a modelling parameter that

we define. 

So, we say that the effective mass of an electron is m n star n stands for the electron and

m p would stand for the hole and the star there says that it is the effective mass. So, we

say that q into E which is a force is equal to the rate of change of momentum which is

the mass the effective mass of the electron into the drift velocity of the electron divided

by t collision. And what does t collision? It is the mean collision time of the electron.

So, we say that the electron has managed to acquire some velocity and the mean time

before width which it  is  going to lose that velocity  is  something called as the mean

collision time t collision. So, it is typically around these expected values of time which is

a statistical estimate it is expected that the electron undergoes a scattering event after

every  d collision  seconds.  And therefore,  this  equation  defines  the  movement  of  the

electron as per our simple model ok. So, that is the kind of model that we would like to

develop and if we continue using this model, we see that the drift velocity is nothing, but

mu times the electric field. And therefore, this mu which is the mobility automatically

becomes defined as q into t collision by m star where m is the effective mass of the

electron.

Now, while performing calculations using such an equation, it is important to note that

you will get the mobility in terms of meter square per volt second which is the units of

mobility. It will be in meter square per volt second. So, what is this effective mass?
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So, we said that we would like to define or you know create this parameter called as the

effective mass of the electron, in order to write down a simple expression governing the

motion of the electron in the crystal. And therefore, we defined mobility saying that the

mobility is q into the mean collision time divided by the effective mass of the electron.

So, that was the electron mobility. 

So, we would like to define the effective mass in a more careful manner. So, how do I

extract, how does one extract? What this effective mass is? What value you should be

used for this effective mass? Is it a guess or is it is a why is it a wild guess that we just

use in to fit any data or is there at least some starting point for this guess ? The answer is

that there is a starting point for this guess and that starting point comes in from our E K

diagram ok.

So, let us say let us go back to the E K diagram that we used when we define the Kronig

Penney Model etcetera. And there we had these s shaped stitches and I had mentioned at

that  point  that  these s  shaped stitches  the edges of those could be modelled as little

parabolas. So, let us come back to that point.

Now, here is an example of an E K diagram for a certain crystal.  You have an clear

energy band gap which is got a this crystal has got a band gape E g. So, those are the

conduction band states and these energies correspond to say those conduction band states



and here are the valence band states and these energies correspond to the valence band

states. So, these are all the filled states and those states are mostly empty.

So, if an electron were to jump into one of these conduction band states. Let us say an

electron is to go there ok. So, which means the electron is free to conduct through the

crystal and therefore, it has got a certain mobility and therefore, in order to calculate this

mobility, we need to identify the effective mass or its vice versa. We know the mobility

and we can  therefore,  calculate  the  effective  mass.  So,  how does  the effective  mass

appear in this picture ok? And the answer is given by this little relation here while the

derivation for this has to be a little bit more careful. We will do something that is a bit

more crude.

So, let us say that the energy is nothing, but p square by 2 times the effective mass and p

is nothing, but our momentum which is h bar k the whole square by 2 times the effective

mass. So, what is d E by d k ? The answer is it is minus it is its sorry it is h bar square

into k by m star where m star is the effective mass. And what is d square E by d k

square ? The second derivative we say that it is h bar square by the effective mass. And

therefore, the effective mass can also be written as h bar square by d square E by d k

square which is the expression given here.  So, therefore,  if we know if  we have the

energy E k diagram for  a  crystal,  we take  these energies  this  E k region which  the

electron occupies in the conduction band.

And we say that we will that we would fit the best fitting parabola to this region and let

us say that parabola has a relation such as alpha k square plus say whatever coefficient

let us say that is E g. So, it is got its got an E k relation that goes as alpha k minus k

naught square plus E g in a very general manner. And once this fit is made the term d

square E by d k square is given by 2 times alpha. And therefore, the effective mass can

be said to be h bar square by 2 times alpha 

Now, note what happens in the valence bands ok. So, what is important to the valence

bands is that you have holes that are the charge carriers. So, let us say you have empty

states in the valence band. So, let us say we have a hole here ok. Now let us for a second

imagine that the hole is now going to behave like a particle and if you are going to use

the same kinds of laws of motion that is a relation between the force and force and the

effect the sorry the mean collision time and the mobility and the effective mass for a



hole, we can calculate the mass for a hole using a similar argument ok. But since this

parabola is inverted, we find that we end up with negative values for the mass of hole.

So, the hole could be imagined to be having a negative charge in response to the that

moves in an opposite direction with regards in response to an applied electric field or it

could be assumed to be having a negative mass which is moving in the opposite direction

in response to the applied electric field.
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So, in order to understand the velocity of carriers in response to an electric field better,

we will now look at these 2 plots. Now these plots show the rest of the velocity of the

carriers  in  response  to  an  electric  field  for  a  very  large  electric  field  range.  So,  in

materials like silicon, we will see that the drift velocity of electrons typically follows this

kind of a profile. 

At low electric fields, we find that the drift velocity is proportional to the electric field

and  that  constant  of  proportionality  is  the  mobility.  So,  just  like  how we  define  an

electron mobility one could you also use the same kind of a relation to define the drift

velocity of holes. So, since both electrons and holes are carriers of current the holes in

the valence band and the electrons in the conduction band are both carriers of current, we

are we can define a drift velocity for both these species and that can be given by this

relation for low electric fields.



Now, as the electric field continues to increase the drift velocity rolls off and begins to

saturate ok. And the mobility and the velocity of these carriers saturates and to a point

which is called as the saturation velocity. So, at very high electric fields the velocity of

the carriers and materials like silicon saturate. Now other materials like say for example,

gallium arsenide behave in a slightly more interesting manner. So, here is a plot of the

drift  velocity  of  carriers  in  gallium  arsenide,  drift  velocity  of  electrons  in  gallium

arsenide versus the electric field.

So, at  low electric  fields we see that the drift  velocity  is  proportional  to the applied

electric field and the slope defines the mobility. But as the as the electric field begins to

increase, the drift velocity tends to saturate, but then it suddenly starts to drop low and it

drops down and begins to saturate at a new value. Now this interesting phenomena is

something called as the gun effect and it can be explained by looking at the full E k

diagram for gallium arsenide.
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So,  in  this  these  plots  show  the  complete  energy  versus  k  diagram  for  different

semiconductors for 3 different semiconductors; germanium, silicon and gallium arsenide.

And these plots have been taken from our reference textbook which is S.M. SZE book on

Semiconductor  Physics.  And  in  these  plots,  what  you  see  are  the  e  k  diagrams

considering  the fact  considering  the entire  3  d crystalline  material  and you find that

depending on the different planes and the different directions you have these range of



curves which constitute the energy k diagram. And our conduction band and the valence

band that we have looked at appear in this particular manner. You look at the lowest

energy of all the states that are mostly empty and that defines our conduction band edge

E c and you look at the highest states of all these energies that are mostly filled and that

defines  our energy level  E v and this  gap is  defined as  E g.  So,  this  is  the case of

germanium. And here we have the case of silicon where you have the lowest point of the

conduction band conduction bands and the highest point of the valence bands and their

energy gap E g.

Now, the material of interest to us with regards the previous slide is gallium arsenide. So,

here  you  have  the  energy  k  diagram  for  gallium  arsenide  and  we  are  particularly

interested in this region that I have shown in red. And therefore, here is the lowest point

which is your E c and that is the highest point of the valence bands that is our E v. Now

at thermal equilibrium, before we apply any voltage, we find that this is the smallest gap

that is your energy gap. 

And we find that the electrons from the valence band are promoted to the conduction

band and they begin to occupy this valley here. And this valley has got a certain profile

you have an energy k profile which is say which is say defined as alpha k square and

depending on the value of alpha, we have these electrons are having a certain effective

mass. And based on that effective mass; so in this case, it would be h bar square by d

square E by d k square which would be of the order of h bar square by 2 alpha.

Now based on this effective mass the electrons would have a certain mobility which is

given  by q  into  t  collision  by  m star. Now as  the  electric  field  increases  the  n  the

momentum of this  electrons  increases  and there they reach they pick up a values of

energy that allow these electrons to cross over to a different valley in the E k diagram.

So, these some of these electrons move over to this valley here.

Now, this valley is along the energy axis, it lies at a higher energy as compared to E g

and  therefore,  the  electrons  were  normally  not  populating  this  valley.  But  upon  the

application of very high electric fields, the electrons could now migrate to this valley

here. And this valley has its own parabola which could be defined as E is let us say

proportional to beta into k minus k naught the whole square where k naught is given by

this little translation in k space. And therefore, our d square E by d k square ends up as 2



times beta and our mobility and is defined as q into t collision by m star where m star is h

bar square by 2 beta.

So, we therefore, had electrons that had an effective mass defined by alpha and now after

movement into another valley their  effective mass is defined by beta. Now which of

these 2 is greater? This parabola is much sharper as compared to this parabola here. And

therefore,  alpha can be said to be much greater than your beta.  So, if alpha is much

greater than beta, then the effective mass of the electron sitting in this valley is lower as

compared to the effective mass of the electron sitting in the valley here. Or in other

words the mobility  of the electron sitting in this  valley is higher as compared to the

mobility of electron sitting in this valley. 

So, that is why we see a E k diagram that looks like this. So, the electrons initially had a

high mobility and they were occupying the sharper valley, but then as the electric field

increased electrons migrated to the upper and more shallow E k diagram or the upper

valley  that  had  a  more  shallow  e  k  diagram.  And  therefore,  it  their  effective  mass

increased  and their  mobility  is  came down and therefore,  we see a  drop in the drift

velocity. So, that is the explanation for the gun effect, in the case of gallium arsenide. 

Now, before we wrap up and close this topic, there are a couple of points that I would

like to make with regards to this E k diagram. And these are points that we will come

back to later as well, but since we are already here we might as well just discussed this

aspect. Now in the case of silicon and germanium; so, we note that the valence band that

is the E k diagram corresponding to the valence band and the E k diagram corresponding

to the conduction band have their minima or their maxima or their point of inflection let

me say at different locations in k. 

So, we see that this minima and this maxima are located at different points in k. And the

same is true with silicon you see that the minima of the conduction band and the maxima

of the valence band are located at different points in k space. On the other hand, in the

case of germanium or in the case of gallium arsenide, we find that the minima of the

conduction band and the maxima of the valence band are located at almost same point in

k; there is no need for any translation in k space.

So, these materials where there is the minima of the conduction band and the maxima of

the valence band are located at the k same value of k, these materials are materials said



to have a direct band gap and these are called as direct band gap semiconductors. And on

the other hand, materials such as silicon where the maxima of the valence band and the

minima of the conduction band occur at different values in k which would require an

electron making a leap from a valence band to the conduction band having to change its

k. These kind of materials are called as indirect band gap semiconductors. And they play

a significant role when it comes to and this different plays a significant role when it

comes to the generation of electron hole pairs and the recombination of electron hole

pairs which is a topic that we will discuss further down the road.


