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So, far we have looked at quantum mechanics,  which described the behaviour of the

wave particle via, the wave functions psi. And it described the physics and the behaviour

of very tiny particles such as electrons and said that there was some very interesting

behaviour such as the quantization of energy, such as the aspect of tunnelling through a

barrier etcetera, which could not be explained by classical mechanics.

We are now in a good position to start understanding the behaviour of electrons in solids.

And over the next few lectures, we will describe, what happens we will describe the

nature of electrons in an atom, and we will also describe the construction of a solid by

bringing  several  atoms  closer  to  each  other,  and  how  this  actually  influences  the

behaviour of electrons in a solid.
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So, to start off let us just look at the atom. And we for an atom, we have a positively

charged nucleus and you have an electron, we have electrons going around this nucleus,

this positively charged nucleus. In fact, you have an electron cloud, because you only

have a certain probability of finding the wave electron at any particular location.

And in order to study, the behaviour of the electron around the nucleus. In your high

school you might have looked into several models, where in you would have equated the

electrostatic forces of attraction, with the centrifugal forces, experienced by the electron.

And also taken into account, the wave nature of the electron by placing a constraint that

there should be an integer times, the wavelength present along each present around each

orbit. And this result this would have resulted in a certain quantum number, which would

have resulted in the quantization of energies.

Now, if we solve sorting this equation for an atom, the potential energy term will have to

take into account electron,  electron interactions in the atom, and the electron nuclear

interactions in the atom. And by solving Schrodinger’s equation, we find that for a 3-D

atom, we will end up with several quantum numbers. And you might also be familiar

with  these  quantum  numbers  from your  high  school,  and  you  might  have  heard  of

quantum  numbers  such  as  the  principle  quantum  number,  the  azimuthal  quantum

number, the magnetic quantum number, and the spin quantum number.



So, therefore, in an atom, we have, we have electrons occupying discrete energy levels

inside the atom. So, what I  have shown here is  the potential  profile  for a positively

charged nucleus, and in some sense this entity here represents the atom. So, if an electron

were to be present say infinitely far away from the nucleus, it would not see any of this

potential and we could say that the potential experienced by this electron is 0.

The electron would be at 0 potential and therefore, it would be completely free to move

about,  and  absolutely  free  from  any  forces  produced  any  forces  prescribed  by  this

positively  charged  nucleus.  But  as  the  at  electron  starts  approaching  this  positively

charged  nucleus,  it  starts  experiencing  this  potential  well  and  it  is  drawn  into  this

potential well and it eggs and it can experience many stable states inside deeper inside

this well. So, therefore, these different shells of an atom.

In some sense relate to these energy levels as shown in this figure. So, here you have

these different energy levels, and you have electrons occupying these energy levels, and

the outermost shell is something called as the valence shell. And the electrons occupying

the outermost shell are called as the valence electrons.

Now, these electrons are quite important, because they are the ones that decide or you

know that participate in any interaction between two different atoms. So, if we have two

atoms, it is the valence electrons of these atoms that participate in bonding or interact,

and any interaction between these atoms. So, this is the picture of the electrons in an

atom.
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Now, what happens when you start bringing several atoms closer to each other. So, here

you have a single atom and you have all these electrons that are sitting closer to the

nuclei, and are more tightly bound to the nuclei. Whereas, the valence electrons are the

father ís I mean other, other farthest away from the nuclei and therefore, they experience

the least amount of binding to the nuclei.

Now, when you start bringing two different atoms closer to each other the electrons in

each of these atoms begin to interact, and what do we mean by that. So, let us take two

atoms A and B ok. So, let us say we have atom A, and we have an exactly identical atom,

which is called atom B ok. And let us say to start with these two atoms are infinitely far

apart ok.

So, the distance between them is infinite, which implies that atom B has no knowledge of

atom A it does not feel atom A at all; and atom A does not know anything about atom B.

So, in these two atoms the electrons would occupy, the energy levels as prescribed by

Schrodinger’s equation, and in fact, both these atoms since they are both identical the

electrons would be occupying very identical energy levels in each of these atoms. But the

moment we start bringing these atoms closer to each other. So, we let us, let us now start

reducing the distance between these atoms. So, the moment we start bringing these atoms

closer to each other, we find that the electrons now begin to feel each other in the sense

that the atoms now learn of each other’s presence.



Now, electrons are fermions and they, they follow something called as a Fermi-Dirac

statistics, which we will describe later in this course. And therefore, they have to obey

something called as the Pauli’s exclusion principle. And what Pauli’s exclusion principle

tells us is that it places a constraint ok. It says that note no two electrons can have all

their quantum numbers the same, which is no two electrons can have can occupy the

same exact same energy level or energy state. And, because of this limit, when we start

bringing atoms closer to each other, we find that these electron energy levels have to start

splitting ok, they need to they can both these energy levels cannot remain the same, and

the energy levels  start  splitting  in  order  to accommodate  the extra  electrons  that  are

appearing, because of the two atoms.

So, this interaction between two atoms is in a simple manner described here, and we will

describe it a little better in the next slide. But what you see here is here you had the first

atom, which had it is own potential profile, and then we had the second atom which had

it is own potential profile. And the moment we start bringing these two atoms closer to

each other, these potentials these potential profiles begin to interact, and you start seeing

a potential profile that looks like this.
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So, let us look at the splitting of energy levels a little better. So, I here have a very crude

drawing, which shows this aspect. So, let us say the so what we have here is a plot of

energy versus distance between the atoms. So, so this distance is the distance between



the two atoms A and B that, we were talking about. So, initially this distance is infinite;

so initially we start off at infinite. And we look at the energy levels of each of occupied

by these electrons.

So, since the atoms are infinitely apart, the energy levels are very are identical, and there

is absolutely no splitting in the energy levels, because the atoms do not feel each other.

But as we start  bringing the atoms closer to each other, the valence electrons or the

valence shell first begins to respond the energy levels in the valence shell begin to start

splitting, because they feel the other atom the earliest.

So, as we start reducing the distance between the atoms, these outermost electrons the

energy levels here begin to split and as we bring them closer and close as it start bringing

these atoms closer and closer, the inner shells also begin to feel, the presence of the other

atom. And the energy levels and the inner shells will also begin to split. Now, although I

have just shown two lines here to indicate the splitting that the splitting will involve, so

as you bring say n atoms where n is a very, very large number to start creating a solid.

This  flitting  will  have a  large number of finally, separated energy levels  ok.  So, the

splitting will be very, very fine. So, you have you have the number of energy levels here

being proportional to n. So, as we start bringing in more and more atoms you will have

more, and more energy levels, and the splitting would be very, very fine.

So, if we were to say, if you were to take this particular position, let us say the distance

between the two atoms is this value here. And if we were to look at the energy profile,

because of the system of two atoms, we would find that, this energy level would be quite

discrete,  I mean it would be almost single. There has not been much splitting in the

innermost shell; whereas, the outermost shells have experienced significant splitting of

energy levels.

And therefore, the outer shells would be would appear as bands of very finely spaced

energies, very finely spaced energy levels and then we would have, and then we would

have  a  very  large  gap,  and  these  are  the  forbidden  energies,  because  Schrodinger’s

equation does not  prescribe solutions  to the electrons.  And then, we would have see

another little band, another band which is again got very finely spaced energy levels.

So, this would be the energy profile that emerges from the experiment, where and we

will start bringing atoms closer to each other. Now, what do we mean by energy levels,



what are these dashes that, we are drawing here. Now, each of these levels ok, so the

energy levels are nothing but solutions to Schrodinger’s equation ok. And the electrons

have to accept one of the solutions to Schrodinger’s equations.

And therefore, these their energies are very specific and they are quantized ok and so

each energy level basically provides it,  it  says that it  is a spot that an electron could

occupy, it  is an energy state  that an electron could occupy or in other words, it  is a

solution,  it  is  a specific  solution that  they to Schrodinger’s equation  that  an electron

could take up. And these energy levels are also sometimes called as states or energy

states ok. So, we imply the same thing.
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So, now let us look at a different picture ok. So, let us say we now, start we have brought

in several atoms ok, and these are the nuclei the positively charged nuclei of all these

different atoms. And we have arranged them, in a very periodic linear arrangement ok.

So,  you  have  these  different  atoms,  and  we  have  placed  them  in  a  nice  periodic

arrangement,  which is  just  one-dimensional  ok.  So, we just  have one dimension and

along this dimension x, we have placed these atoms.

Now, the potential  energy profile or the potential  profile for each nucleus due to the

positive  charge  of  each  nucleus  would  look  like  this.  If  I  were  to  draw  them  all

separately,  these  potentials  would  all  appear  like  this  and  so  on  ok,  so  that  that  is

probably another that is another nucleus here, that I have not shown. So, these it is only



at the ends of the crystal so, let us say the crystal has got a length L. So, what do we

mean by a crystal, we will define it more thoroughly later, but it is simply a periodic

arrangement of atoms.

So, let us say this arrangement has got a total length L. So, we have now brought in 5

atoms, and there is a total length L and we find that these the potentials at these edges ok,

as seen by the electron is would be 0, only at these edges. And the electron sitting here

will be completely free from, completely free and would not know anything about this

structure present here. But then as we get inside as we start entering this arrangement so,

as we start looking at the potential profile along this a direction x. We will see that these

potentials different potentials of these at different atoms. Now, interact and you will end

up with a potential profile that looks like this, so you will see the potential starting to

look like this.

So,  you have different  potential  wells,  you have a  periodic  arrangement  of potential

wells, and you also have you also have some a kind of a barrier between these different

wells, you also have a periodic barrier between these different wells. And, it is only at the

edge,  only at  the edge of these crystals  that the potential  profile expands out in this

particular manner.

So,  this  is  the  situation  when  you  have  a  periodic  arrangement  of  atoms  in  one

dimension. And you could use, extrapolate this concept to any number of dimensions,

you could say a three-dimensional atom, three-dimensional solid or a two-dimensional

solid as well. And here we represent the potential term by U of x, so that is, that is going

to  be  the  potential  that  is  going  to  take  part  into  the  potential  energy  term in  any

Schrodinger’s equation that we write.

So, now if you look at the energy levels the electrons occupy, so inside let us take this

particular atom ok. So, inside this atom, the electrons are sitting in these discrete energy

levels ok, which have now started experiencing some, some amount of splitting, because

we have started bringing in many atoms closer to each other and the electrons that are

least held by the nuclei ok. So, the so although the although, we have shown a blue circle

there, it is only to indicate the presence of the nuclei it is not, saying that the nuclei is

located there; in fact, the nuclei is located here. So, that is probably something I should



have been careful about, so I do apologize, but I hope this is this is this is quite clear all

right.

So, that is the blue circle they are just indicating the location of the nuclei ok, and this is

the nuclei. So, all these energies, so as we head closer to the nuclei, all the electrons that

are occupying energies closer to the nuclei are more tightly held by the nuclear. And it is

only these electrons that are the most weakly held and they are something called as the

valence electrons.
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And we have also indicated a red line here, a dashed red line. So, we will not worry

about, the dashed red line for now, but this is something called as the Fermi level, and we

will encounter the Fermi level later in this course. So, it is just something that is useful to

know it is the Fermi level, and that is what this red line is. And we will encounter this

term, and describe it more carefully later in the course.

Now, if an electron sitting in one of these atoms gets excited, let us say it receives a lot of

energy  either  through  either  through  an  interaction  of  the  photon  or  simply  it  just

receives a lot of thermal energy, from the from a non-zero temperature in the ambience.

This electron could get excited, and it could jump into energy levels that are higher up

ok. And if these electrons could occupy energy levels that are above, above this Fermi

level say for example, then one could say that the electron is now sitting in a different



potential profile, the electron is now free to move out in the solid; and the electron now

sits inside a potential profile that looks like this.

So, what this implies is that the electrons in this periodic arrangement see two kinds of

boxes. So, we looked at particle in a box. So, the electrons here see two kinds of boxes,

they see two kinds of potential wells. The first is the potential well prescribed by each

atom, so this is one box and the second is if they were to escape the clutch of this atom,

and enter  into  higher  energy states;  then the electrons  would see a much wider box

prescribed by the length of the entire periodic arrangement. So, now we are going to use

all  these  ideas  to  develop  a  more  mathematical  and  a  quantitative  estimate  as  with

regards to the formation of energy bands, and energy gaps in a solid and all this is done

via something called as the Kronig Penney Model.

(Refer Slide Time: 20:24)

So, what is the Kronig Penney Model? To start off with our starting point is what we

discussed,  which  is  you  have  a  linear  ok.  So,  we  say  a  one-dimensional  periodic

arrangement of atoms and these are the locations of all these atoms.

And therefore, you have a potential profile that looks like these green curves shown here,

and as we mentioned the last atom that forms, that forms this linear arrangement would

exhibit a potential profile that looks like this. And you could have electrons either being

either sitting in these potential wells or they could be excited into higher energy states,

and would basically experience a potential well that looks like this ok, which essentially



means that the electron is free to move about in the entire potential well or the entire

crystal in this case.

So, now to in order to start quantifying, quantifying this behaviour of electrons, we need

to  start  solving  Schrodinger’s  equation  and  since  it  is  quite  complicated  to  solve

Schrodinger’s equations for this energy, this potential profile, they are going to make a

big assumption. And we are going to say that, we are going to they are going to say that

yes, this is that this is indeed the true potential profile for seen by the electron in this

linear arrangement of atoms.

But  we  are  going  to  make  this  assumption,  and  represent  this  potential  profile  by

rectangular  potential  wells,  because  we  know,  we  know  the  methods  to  solve

Schrodinger’s equation for rectangular potential wells. So, we say that, we say that, we

got it, we are going to take we are going to take this true nature of the potential profile,

and  we  are  going  to  create  a  mimic  or  a  model,  which  looks  like  this.  So,  it  is  a

sequential arrangements of two regions A and B.

Now, A represents is indicative of this potential well here, so that is your A and B is

indicative of this barrier. So, instead of having struck a geometry like this, we now have

a very nice rectangular geometry and we also redefine our potentials. We say that this

floor is now said to be the reference potential, and it is given by the symbol U which is

equal to 0. And the barrier height is said to have another potential, which is given by this

variable U naught ok, so we have redefined our potential energies so as to for it to be

applied in Schrodinger’s equation.

And further, we now consider two potential valleys, and we are just going to study these

two valleys by looking at this picture here. So, we now redefine our x coordinates, and

we say that this is the x axis, let us consider a sequential arrangement of A and B. And

we will define the width of this potential well to have to be a naught; and the width of

this barrier to be b naught. And we define the origin to be this location here the x is equal

to 0 and we define, this point here as x is equal to a naught, and we define that point

there as x is equal to minus b naught; and therefore, this point takes a natural value of x

is equal to minus of a naught plus b naught. And this term represents, represents the

periodicity of this potential map, and it is given a very special symbol a, which is called

as  the  lattice  constant.  And  this  periodic  arrangement  is  something  called  as  a  one-



dimensional crystal ok, we will redefine the crystal much better in a few slides, but you

can  just  note  that,  this  periodic  arrangement  of  atom in  one-dimensional  is,  is  also

referred  to  as  a  one-dimensional  crystal.  It  could  have  been  wiser,  if  I  had  used  a

different symbol, since I have already used a naught here, but this symbol a is quite often

used to define the lattice constant.

So, given this structure, we can now write Schrodinger’s equation. So, we define the

wave function in the different regions. So, we consider this region which is from x going

from 0 to a naught.

(Refer Slide Time: 25:26)

So, this particular region when 0 is less than x, less than a naught ok. And we say that we

could say 0 less than equal to. And we could say that the way the wave function in this

region is psi of A. And we then consider this region B here, where x is less than less than

equal to 0, less than minus b naught and say that the wave function there is psi of B. So,

please note that we have not defined the wave function in this region to be psi of A, it is

not psi of A. It the wave function takes the form psi of A only in this potential well. And

although this potential well here, is very similar to this potential well to the other to it is

twin. The wave function there is not psi of A, but it is related to psi of A and we will soon

see, what that relation is.

So, here we have these two regions psi of A and psi of B. And we are going to write

Schrodinger’s equation for this region, and this region. So, since we have already gone



through several such examples, it  is quite easy to see that Schrodinger’s equation for

region A, this particular region A is given by minus h square by 2 m dou square psi A by

dou x square is equal to E times psi. The potential term there is 0; the potential energy is

0. And therefore, psi of A has got a very general solution, which is of the form A A, that

is A in region A sine alpha x plus B in region A cosine alpha x is equal to psi of A.

Now, once again I apologize for not taking choosing these variables more wisely. So,

here A is a constant coefficient, A of A is a constant coefficient; and this represents A in

region A. And B of A is again a constant coefficient that is basically talking about it is

value in region A and the term alpha is nothing but your square root of 2 m E by h bar.

So, this is the general solution of Schrodinger’s equation describing psi of A.

Now, in region B, in this particular region, we now have a potential term, which is not 0.

So, the potential energy is not 0 and therefore, we now have Schrodinger’s equation,

which looks like this, which is minus h power square by 2 m dou square psi B by dou x

square  is  equal  to  E  minus  U  naught  into  sine  B.  And  the  general  solution  to  this

Schrodinger’s equation  is  also  of  this  form ok,  but  with  the,  but  with  two different

possible cases. So, here you have the coefficients A of B and B of B that form the pre-

factors to the terms of sine beta times x and cosine beta times x therefore, the solution is

A B sine beta x plus B B cosine beta x is equal to psi B of x.

Now, what is beta? If my energy the total energy is greater than the potential energy, beta

is given by this particular expression, and it is a real value, it is got a, it is a real number.

On the other hand, if E is less than U naught, which means the total energy is less than

the potential energy, we see that the wave function can exists, exist even in that particular

region, and that is, that is why the process of tunnelling, and that is something, which is

very unique to quantum mechanics. So, therefore, the wave function can exist and beta

takes the value of a it is a complex number, where i here is square root of minus 1. And,

if beta is a complex number, and the sine and cosines of a complex number will result in

exponentials of a real number.


