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We will start off with the Fundamentals of Quantum Mechanics, ok. Now, most students

are probably at the end of their high school are very familiar with classical mechanics

which  is  governed  by  the  traditional  Newtonian  laws  of  physics,  which  is  very

commonly  taught  at  the  high  school  level.  Now, for  students  are  not  been  exposed

quantum mechanics some of these ideas can turn out to be very strange, and you know

sometimes very puzzling, ok. And there is no better way to introduce quantum mechanics

at  least  in  my  opinion  then  to  look  at  this  famous  thought  experiment  by  Richard

Feynman, ok. And the experiment starts off you know the discussion on this starts off

like this.

So, many students are familiar with the Young’s double slit experiment, but what we are

going to do we are going to play around with this experiment and try out different ideas

here. So, let us say you have instead of you have a gun, and it is a special kind of a gun

which  shoots  out  marbles,  ok.  So,  essentially  what  I  mean  by marbles  is  any large

discrete particle, ok. So, it could be marbles or you know it could be bullet us it really



does not matter large discrete particles that cannot break up that are going to come, that

are going to remain you know structurally which have got structural integrity throughout

this experiment. 

And you take this gun and you start firing marbles one at a time, and there is a certain

spread to this firing. So, it is not going in a straight line there is a certain spread. And

then you place a barrier right in front of this gun, and this barriers got 2 gaps they got 2

fine gaps through which the marble can get through and we will call these gaps a slit 1

and slit 2, ok. And what we are interested in seeing is we want to know what the pattern

of impact is on a screen that is placed behind this barrier. So, we have a recording screen

here, and this these little marbles will come and try to stick on to this recording screen,

and what we want to find out is how many marbles were collected at some point x from

some reference x equal to 0. 

So, if you define this point on the screen as x equal to 0 and you vary this distance as x, I

want to know what is the probability, that a marble came and struck the screen at this

point and a simple way to estimate this probability is simply by counting the number of

marbles that came in impacted the screen at this point divided by the total number of

marbles where fired from this gun, it is a very simple way of looking imagining this. So,

I need to find out I want to get a distribution of the impact profile on the screen, ok. So,

that is that is the simple experiment. 
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Now, let us try to play around with this. So, let us say we closed one of these gaps, ok.

So, this gap is closed. So, slit 2 is closed and slit 1 is open and you fire your marble gun

and you will  find that all  the marbles  you know they cannot get through the barrier

beyond this point in these regions, and the only possible way to you know impact screen

is by travelling through this gap here. So, you will find that the marbles randomly travel

through this  gap.  So, it  might  go there you know bounce off  this  edge some of the

marbles might bounce off that edge and some of them might just get through and so on. 

And what  you would expect  is  you would expect  most of the marbles  that  ever  got

through this gap to strike the screen at some point here, and there would be some sort of

a gradual decrease in this probability that a marble really impacted the screen at the other

places. And this is what any this is what say common sense might tell us, ok. And it is a

fairly good argument because there is only one entrance to this entire path to the screen.

On the other hand if you were to close slit 1 and keep slit 2 open you would expect the

same profile, but the only thing is it shifted in x, ok. So, you do not expect the profile

there because there is no path to strike the screen over there into the marbles are now,

going to enter is going are going to enter this barrier through slit 2 and they are going to

impact the screen in this manner you will find a lot of marbles impacting here and very

few in the other regions. So, you have some kind of a profile like this. 

Now, what is key is to understand that the marbles are going through one marble is going

through only one slit, a marble cannot decide to go through both slits together, ok. That is

what that is what we feel that is what our intuition is, ok, the reality might be different,

ok. So, if you were to go talk to a layman and say you know this marble travel through

both slits together it would appear a bit puzzling at least initially, ok. And you with that

intuition you do expect this distribution and this is what you might actually see if you

were to conduct this experiment. 
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Now, if you keep both slits open you will find that the marbles are able to go through

both  slits  simultaneously  you will  see  a  profile  of  marbles  you know impacting  the

screen in various paths and you expect the profile to look more or less like this. So, I

probably cover it with all my writings, but you would expect the effective profile to be a

summation of these two profiles that you see and you would expect something of this

kind, ok. And of these slits are very far apart you might you might see a slight dip up

here in this. 

So, essentially the probability of finding a marble the probability that a marble impacted

the screen at some point x, from this reference is let us say p of x and that is simply the

summation of the probability that the marble came through slit 1 and impact to the screen

and that the marble came through slit 2 an impact in the screen. So, it is just a summation

of these two probabilities.  And what is important is that we have this intuition that a

marble can only go through one of the two slits, ok. So, it cannot go through both slits.

So, now, that is what the experiment with marbles tell us, ok. So, now, let us change the

experiment of it. 
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Instead of having a gun which shoots out marbles we will have a wave generator, ok. So,

you can think of it as a way a gun that shoots out waves. And these are the wave fronts,

so you can conduct this entire experiment in water or oil if you like and these are the

wave fronts, of this wave. And this waveform front propagates through and we keep the

same barrier that we use in the previous experiment maybe change the sizes a bit, but

essentially the idea is the same and once again we need to keep a recording screen and

we want to record the intensity of the wave observed on the screen, ok. And we want to

find out what is how does the intensity vary with the x, ok. 
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So, once again if you go back through our thought experiment which is to close the slit

and keep that slit open the wave front strikes this barrier and it would sort of diffract

through this little opening and it would strike the screen giving you a distribution and

intensity distribution that probably looks something like this, ok. And this distribution is

very strongly of course, it is very strongly dependent on the size of the slit, but that is not

the main point of all this argument, ok. So, you have an intensity distribution that looks

like this.

Now, if you were to close that slit and keep this one open you will find another intensity

distribution that looks like this. 
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Now, if you were to keep both slits open the wave front enters through both slits at the

same time and what you will see is an interference of these two waves. So, you see all

these points where both these wave fronts are interfering with each other, ok. So, what

you will see is an interference pattern, wherein the effective intensity at some point x

depends  on  the  intensity  of  the  wave  coming  the  intensity  1  which  is  basically  the

intensity or the waves coming through slit one and intensity 2 in this manner, and this is

the interference term where this is the phase difference between these waves. 

So, what is key here is unlike bullet us we imagine the waves to be going through both

slits simultaneously and that is why we have interference, ok. Now, the bullet us did not

do this, that is what our intuition told us but on the other hand the wave front you see it



approaches both slits simultaneously. And it goes through both of the slits simultaneously

and therefore, you have interference. And this is you know sort of very well expected and

we have experiments such as the Young’s double slit experiment which sort of sort of

provides an empirical or an experimental corroboration with all this theory, ok.

(Refer Slide Time: 10:41)

Now, let us come down to a third experiment. And what we do here is we go back to a

marble gun, ok, but instead of firing marbles we have to fire electrons, ok. So, we have

an electron gun. So, essentially you can imagine these to be very tiny particles. So, what

I mean by an electron gun is it has to be very tiny particles, ok. And it is alright at this

point think of these particles as discrete, ok. And we perform the same experiment and

we fire one electron at a time. 

So, let us say you do not had to fire all of them together you do not have to fire you do

not have to fire them at any specific rate let us assume that you are firing one electron at

a time. So, you have one electron, you wait for some time, you fire a second electron you

wait for some time and go on so forth, and you perform the same experiment, you still

have your barrier with 2 slits and you have a recording screen. And the question is what

do you think will happen here, ok. 

Now, if  you follow the  intuition  of  the  marble  if  you think  of  electrons  as  discrete

particles  they  are  very  tiny  you  would  expect  that  the  electrons  that  one  particular

electron chooses to go through any one slit, right. So, maybe this electron went through



this slit the second electron went through this slit and so on, and what you would expect

to see it is a distribution that looks not very different from our experiment on marbles

right you would expect to see a distribution that looks like that, but the reality is quite

surprising.
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If you were to do this experiment what is expected is you would see a distribution that

looks more like what  the way more like the manner in which the waves behaved as

compared to the bullet us, ok. And that is largely slow because it is not intuitive, and

there is this a puzzle because we were to believe that the electron went through only one

slit at a time, right. The electron this particular electron decided to either go through this

slit or this one it did not go through both slits that was our intuition but that is not what

the experiment says. 

The experiment is telling you that despite the electrons being fired one at a time you

know with even some sufficient space and time between the firings. Each electron has

gone through both slits simultaneously much like a wave and not like a particle and that

is a big puzzle, ok. 
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So, we say that the, this is not quite possible we say that it is impossible for the particle

like  electron  to  be  behaving  like  a  wave  and  producing  an  intensity  pattern  that  is

expected when we have waves, ok. And we say that we do not believe the fact that the

electron went through both slits simultaneously and therefore, we are now, going to place

a detector at this location in order to identify the position of the electron. Or in other

words they are going to place this detector that is going to exchange information with

electron  it  is  going  to  ping  the  electron  at  the  photon  let  us  say  and  in  obtained

information with regards to the position of the electron. 

And the point placing the detector is to identify the slit through which the electron is

going to enter, and then see has to what kind of recording these obtained on the screen.

So, let us say we keep the experimental setup the same the recording screen is the same,

the position of the slits are the same, the electron gun is the same etcetera and the only

difference is the appearance of this detector. So, what kind of pattern do we think that we

will see the electrons create on the recording screen? So, when we run the experiment we

have a very surprising result. We see that when the experiment is run with the detector

and place the electrons produce an intensity pattern that was seen when bullet us were

fired or when large particles were fired.

Now, this is even more surprising than the previous experiment. So, what the electrons

are  saying  is  that  when  there  is  no  detector  around,  we  are  going  to  behave  very



differently;  we are going to behave like waves and create  an intensity pattern that is

expected of waves. But the moment we identified that a detector is watching us, they are

going to behave very differently and we are going to behave like bullet us and create a

very different intensity pattern. And this is the puzzle of quantum mechanics, and this is

what quantum mechanics tells you which is that the, that at the very basic level you treat

every particle as a wave and a particle or a wave particle ok. And from this point on they

are going to go ahead and develop this concept and try to understand this idea of a wave

particle. 

As far as this part of the experiment is concerned, which is the interaction of the detector

with  the  electron,  creating  the  making  the  electron  behave  differently  it  is  a  very

wonderful ground for philosophers to act on and there are a lot of interesting debates, ok.

while there is while it is quite at least qualitatively understood that as to what happens,

there are a lot of interesting debates between physicists of the twentieth century in trying

to argue this factor out. So, it makes so very for some very good reading for the student

who is interested. 
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So, let us now try to understand this key concept of quantum mechanics, which is called

as the wave particle duality, ok. And the idea of this concept is that both a wave like and

particle like treatment is needed to explain electron explain the experiments involving

electrons photons or any other tiny particles. So, for example, if you look at the photon



we have,  its  wave like nature appear in experiments  such as the Young’s double slit

experiment. And we have its particle like nature appear in experiments such as such as

the photoelectric effect, ok. 

And if you look at the electron, we have its wavelike nature appear in the experiments

that we just discussed which was which was like the Young’s double slit experiment. And

we have its particle like nature appear and experiments which involves a scattering, ok.

So, we need both of wave like treatment as well as a particle like treatment to explain the

behaviour of these entities, and coming to the electron you know, which are basically the

particles of interest with regards to this course of course, it is not that the photon is not of

interest, but we would like to elect understand the electron very well. 

So, coming to the coming to the electron just like how you know its particle like aspect

can be defined with the with terms like the momentum, which is say the mass into the

velocity and terms like the kinetic energy, which is half into the mass into the velocity

square. Just like how you can define say the particle attributes of the electron we need to

also identify the wavelike attributes of the electron. So, what is the wave length of an

electron?  And  this  relation  between  the  wavelike  nature  and  particle  like  nature  is

defined by the De Broglie’s equation. So, it  is a very very essential  idea or essential

concept, which connects the wavelength of the wave particle to the momentum of the

wave particle. 

So,  we say that  lambda which is  the wavelength is  defined as h by p,  where h is  a

constant and it is called as a Planck’s constant and it is got a value of this. It is the same

constant that is used to define the energy of a photon. So, the energy of a photon is h

times nu, where nu is the frequency of photon, we are talking about the same Planck’s

constant and p is the momentum of the electron. So, if you know the momentum of the

electron.

So, let us say the electron is fired from a gun with a certain amount of energy kinetic

energy.  So,  we  know  the  kinetic  energy  of  the  electron  which  is  nothing,  but  the

momentum squared by 2 m, where m is the mass of the electron and therefore, we know

the momentum of the electron and if we know the momentum of the electron we know

the wavelength of the electron via the De Broglie’s equation. So, let us get some numbers

and some estimates and you know try to see as to how we can use this equation. So, the



electron has got all these properties it is got a charge of minus 1.6 into 10 power minus

19 coulombs, it is got a mass of 9.1 to 10 power minus 31 kilograms. So, that is a rest

mass of the electron. 

Now, let us say the electron is fired from an electron gun you know for the purpose of

this  example,  we say that it  is  got a velocity  of 10 power 5 meters  per second, and

therefore, it is got a momentum of mass into velocity which is about 9.1 to 10 power

minus 26 k g meter per second. And therefore, it has got a kinetic energy and this kinetic

energy can be represented in Joules, but by dividing it by q, which is the magnitude of

the charge of the electron. 

We can also represent energy in terms of a unit called as electron volts. So, if you have

energy in Joules, so let us say you have 1 Joule in order to get this energy in electron volt

units electron volts is a unit of energy in order to get this into electron volts units you

take E and divide it by the magnitude of an electron charge, which is 1 joule divided by

1.6 e minus 19, and you have the energy in electron volts. So, joule is a large it is a huge

amount of electron volts. And since we talk about very small numbers in semiconductors

its useful to have this unit of electron volts. 

And therefore, the terms potential and potential energy are all in some sense connected,

ok,  the  terms  potential  and  terms  energy  are  all  interrelated  because  of  this  neat

connection.  And since you have this  being the energy what is the wavelength of the

electron? The wavelength of the electron is given by the De Broglie equation and lambda

is h by p which is about 7.2 nanometres in this case. So, you see that the electron fired

off with the velocity 1 into 10 power 5 meters per second has a wavelength of about 7.2

nanometres. 

Now, let us take just for just for the sake of argument, ok. So, let us say we have a very

large particle, and I have taken example for tennis ball and a tennis ball is not a single

particle its composed of many little particles, but let us say that is not the case and it is

we are talking about one very large particle. And this particle has got a mass of about 58

grams and it is got a velocity about 50 meters per second, I have used values which are

typically used for a tennis ball and therefore, it is got a momentum of this much. And

what is the wavelength? The wavelength is h by p and since the momentum is very very

large the wavelength is extremely small its 9.1 into 10 power minus 32 meters. 



So, you can compare the wavelength of a large particle  or a heavy particle  with the

wavelength of a very tiny particle or a light particle. And you see that the difference is

quite  immense,  ok.  So,  this  is  an  example  just  to  illustrate  what  mass  does  to  the

wavelength or what momentum does to the wavelength of a object.
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So, here I have summarized some useful relations that would that would serve as well in

this course we have the first variable which is k, which we will be using in the context to

the wave vector or a wave number, and which is given by 2 pi by lambda it is got a value

of 2 pi or its got an amplitude of 2 pi by lambda or a magnitude of 2 pi by lambda the

lambda as the wavelength. Now, k is also, later on in the course k is also used to define

the  Boltzmann’s coefficient,  and  I  hope  that  this  will  not  be  a  matter  of  confusion

because the context will be quite clear and I believe and I hope that this will not create

any confusion. 

The other important relation is the De Broglie’s relation which is lamp which says that

lambda is equal to the Planck’s constant divided by the momentum. And the momentum

therefore, can be written in terms of the terms of the wavelength as p is equal to h by

lambda. Now, if you were to take this relation and you divide and multiply by 2 pi, you

say h by 2 pi into 2 pi by lambda is equal to your p we see that this is nothing but k, k 2

pi by lambda is k and this term which is h by 2 pi is given a new definition, ok. It is

called h bar or its also known as the reduced Planck’s constant, ok. 



So, the term h by 2 pi is also denoted by h bar, which is called the reduced Planck’s

constant and it is got a value of about 1 e minus 34 Joule seconds and therefore, the

momentum can also be expressed as h bar k. 

The energy of a photon is already well known which is h into nu which is a Planck’s

constant into nu and since we can write h as h bar we can say h is h by 2 pi and nu as a

and you multiply 2 pi before nu you find that the energy of photon is also equal to h bar

into omega, by the omega as the angular frequency where nu is in hertz and omega as in

say radians per second, ok. So, these are some very useful definitions that would serve us

in this course. 
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Moving on another key idea behind in quantum mechanics is something called as the

Heisenberg’s  uncertainty  principle.  And  the  essence  of  this  idea  can  be  very  nicely

understood for a person who is got some experience in signal processing or let us say

who is who understands the idea of a Fourier transform. But just to summarize just to

you know introduce this concept let us say that we are looking at a signal, that is going to

occur or an event that is going to occur at some point in time. So, let us say we have the

time or space domain it really does not matter.

So, first let us look at time and we say that, there is a signal that is going to occur at some

point in time. So, let us say there is a signal that occurred at this point in time if at if

somebody asked us as to when the signal occurred the answer is very very clear we say



that yes the signal occurred at this moment in time that is a very clear question and we

have a very clear answer. But if now, somebody asked us as to what is the frequency of

the signal, what is the wavelength of the signal.

Now, that question seems a bit absurd because the signal had a very it was not periodic

firstly, it had it occurred at just one moment in time and that was it. And therefore, the

only way one can determine the wavelength or the frequency of the signal is by taking a

Fourier transform and we find that the Fourier transform is wideband signal, right. It is

got its got frequencies in from minus infinite from frequencies from 0 to infinite, ok. And

therefore,  the  frequency  enhance  the  wavelength  of  the  signal  is  not  very  clear  and

therefore, we feel that the question on what the frequency of the signal is not a very clear

question because the signal is a wideband signal. 

Now, let us take the example of another signal, and we say that this is a very nice little

sinusoid and that is time. And now, if somebody asked us the same two questions, if

somebody asked us is to vend it the signal occur we find that this is a very bad question

or we find that is a very weird question because it is a sinusoidal signal and there is no

particular moment when the signal occurred the signal has been present in all points in

time. 

On the other hand if somebody asked us as to what is the wavelength of the signal this

question seems to be a very nice clear question it is a very clear answer because we can

now, point  to  the  exact  wavelength  of  the  signal  and  therefore,  we  know the  exact

frequency of the signal. So, if you were to take the Fourier transform of this signal, you

would find that it  is  got a very unique frequency component  that corresponds to the

frequency of the sinusoidal signal. 

So, this is the key idea behind you know it is a key concept or the key puzzle behind the

Heisenberg’s uncertainty principle, which is if the location in time or in space is very

clear then the message on the frequency or the wavelength is very very unclear. And on

the other hand if the idea of the frequency or the wavelength is very very clear, then the

location in time or in space is very very unclear, and it is this parent it is this balance

between  these  two  errors  or  the  uncertainty  that  are  addressed  by  the  Heisenberg’s

uncertainty principle. 



So, in one form what the Heisenberg’s uncertainty principle says is that if you have if

you were to perform an experiment say with the electron, and you were to be measuring

the position of the electron and you were to be measuring the momentum of the electron

simultaneously, ok. And if you were to have an error in the estimate of the position of the

electron and an error and the estimate of the momentum of the electron then the product

of these two errors have got a bound and that bound is defined by h bar by 2. And what

this  inequality  says  is  that  one  cannot  estimate  the  position  of  an  electron  and  the

momentum of an electron to the, to an accuracy which wherein the errors or the product

of the errors lie below h bar by 2. 

Or other words if I were to define the position of the momentum define the position of

the electron to the infinite accuracy, I define the position absolutely accurately such that

delta x is 0. Then I will have a very large inaccuracy in the position or in the error in the

momentum I cannot define the error in the momentum at all there will be an infinite error

possibility  and  vice  versa.  So,  this  is  the  definition  of  the  Heisenberg’s uncertainty

principle, ok. And I have given you a very interesting you know reasoning behind you

know our experiment on the electron gun over here we will not discuss it here, but if you

have any questions just let me know. It is uses the Heisenberg’s uncertainty principle to

talk about the events of the experiment.
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So, now, we have a particle that is also called a wavelike behaviour and I want to now,

start modelling it. So, I can associate a momentum to it, I can associate energy to it, I can

wavelength to it and I want to model this aspect of this wave particle, ok. So, there is

everything is this wave particle and I want to start modelling this entity, ok.

And a convenient way to do it is through something called as the wave function, which is

usually denoted by the symbol psi. Now, what is this wave function? Ok, it is for all

practical purposes it is a mathematical function it is a function of space and time and it

contains all the measurable parameters of the particle, ok. And by operating on this wave

function I can extract all the parameters that I would like about this particle and we will

sort of look into this in greater detail. 

So, if you say that you are only talking about a 1D x dimensional case you can say the

wave function is a function of x and t which is time, ok. Now, it could be a complex

function.  So,  this  product  which  is  the  wave  function  times  its  conjugate,  is  the

probability  density function of finding the particle,  ok. So, it  is basically the it is its

related to the expectation of a particle existing between 2 different between 2 regions,

and that is  a  very strong point,  ok,  which means if  I  know the wave function I  can

estimate I can get an estimate of what the probability is of finding a particle between two

regions between two points let us say between x and x plus d x. 

If psi is a real number then this is simply psi square and therefore, the probability of

finding the particle  between x and x plus  d x is  psi  square d x,  because  this  is  my

probability density and that is psi square d x is the total probability of finding the particle

between x and x plus d x. So, what is this saying? It saying that if I have a wave function

that looks like this, for example if this is my psi of x. 

Then I can take the magnitude of psi and I can take the square of it, ok. So, let us say that

does something like this.  So,  what  this  is  it  is  the probability  density  of finding the

particle which means that according to this wave function the probability of finding the

particle in this region is the largest. And the probability of finding the particle here is not

0, but it is not as large as finding the probability finding the particle in this region, ok.

So, that is the implication of this and just going by these arguments if I need to find what

is the probability of finding the particle between say two locations x equal to a and x



equal to b, then it is simply the summation of these probabilities, which is an integral of

from a to b of psi square d x, ok. So, that is the probability of finding a particle. 

Now, let us look at some more properties of this wave function. It is a very important

concept.
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So,  we said  that  the  wave function  contains  all  measurable  parameters  of  the  wave

particle and we said that these measurable parameters could be obtained or extracted

from the wave function by operating on it. So, what are some of the useful operators?

Ok, so we now, look at the momentum operator and the energy operator and therefore,

using these to define something called as the kinetic energy operator. So, let us say I need

to find the momentum of the particle in the x direction, ok. So, this happens to be the

momentum operator and I will give you an argument as to why this is the momentum

operator, ok. 

If I need to find the energy of the particle or the wave particle, then this is my energy

operator. So, what this means is if I take this operator and use it to operate on this wave

function psi then I will get the momentum of the particle in x direction times psi. And

similarly this is the energy the particle time psi. And if I want to find out what is the

kinetic  energy its  p square by 2 m, which is  1 by 2 m into the momentum operator

operating it on itself and then the wave function which is basically your 1 by 2 m h bar



square by I square into dou square psi by dou x square, which is minus 1 by 2 m h bar

square into dou square psi by dou x square. 

So, this is my kinetic energy operator. So, you could imagine this particular element here

to be my kinetic energy operator, when it is operated on the wave function I get the

kinetic energy. So, you have these operators and they tell you what the momentum is the

energy is and the kinetic energies etcetera.

So, just to give you a quick feel for why this is the momentum operator, ok. So, let us say

for the sake of argument let us say my psi is a plane wave, ok. So, let us say it is e to the

power i k x minus omega t, where omega is the angular frequency, k is my wave vector.

So, this is 2 pi by lambda, this is 2 pi into nu where nu is the frequency in hertz, t is time

and x is the distance and i is basically the square root of minus 1. So, wherever you see i

it is simply your complex number, ok. So, let us say let us assume this my wave function,

ok.

Now, let us use the momentum operator on this. So, what is the momentum operator?

Momentum operator is h bar by i dou psi by dou x, since it is all in one dimension you

can just write it as d, d psi by d x, but nevertheless. So, this is nothing, but h bar by i and

taking the derivative with respect to x you have i into k into e to the power i k x minus

omega t. Now, this term here is nothing but your psi itself and therefore, what this is h

bar by i into i into k psi, which is h bar you can cancel the i here and k is nothing but 2 pi

by lambda. 

So,  it  is  2  pi  by  lambda  which  is  equal  to  h  by  lambda  which  is  nothing,  but  the

momentum of the particle. So, therefore, we could agree we have checked for ourselves

that, this seems to be yielding the momentum of the particle in the x direction. So, now,

let us look at the energy operator, ok. So, let us use the same kind of argument with this

particular wave function and let us look at the energy. 

So, if I were to use this operator, which is minus h bar pi i dou by dou t on the wave

function what do I get? Now, taking the time derivative of the wave function I should

end up with minus h bar by i into minus i omega into psi itself, which is the exponential

term. And this is nothing but h bar omega which is h by 2 pi into 2 pi nu, which is h nu

which is my energy, ok. So, that is why this is an energy operator and it seems like it is

all fine. And the momentum operator just derived from the moment the sorry the kinetic



energy operators just derived in the momentum operator and therefore, this is the kinetic

energy operator. 

So, the essential message of these two slides was basically you can use the wave function

to define the, what you say the measurable properties or model the measurable properties

of the wave particle. And you can use all these operators on this wave function to extract

information about the position the momentum the energy etcetera.

(Refer Slide Time: 42:29)

The wave function as we have described now, is a purely mathematical entity, and before

it can be applied to explain the laws of physics it must be constrained and it must be

made  to  follow a  certain  set  of  rules.  So,  what  are  these  rules?  So,  these  rules  are

basically the conditions or constraints it is imposed by the physical laws. And the very

first  rule  is  that  the  wave  function  must  be  a  solution  to  something  called  as  the

Schrodinger’s equation. 

The  Schrodinger’s  equation  is  nothing  but  energy  balance  equation  or  an  energy

conservation equation, which says the kinetic energy plus the potential energy is equal to

the total energy. The second condition is that the wave function must be continuous you

cannot have discontinuities in the probability of finding a particle in one region to now.

The third is that the first derivative of the wave function with respect with in space must

also be continuous because this is connected to the momentum of the particle of the wave

particle. 



And the final condition states that the wave function must be normalizable, ok. And what

that essentially means is that is two things the first is since the wave particle or the does

exist in some point at some point in space say between minus infinity and infinite. And

since this is the probability of finding that wave particle in the space that probability

must be equal to 1, ok. And this limitation will imply that the wave function cannot take

a nature that will result in it blowing up.

So, for example, and what we mean by blowing up is for example, let us say that the

wave function has got a nature that looks like this which is an e exponential of x, and let

us say x goes from 0 to infinite we are looking at this region of space. So, we see that as

x heads towards infinite the wave function the amplitude of the wave function also heads

towards infinite this cannot be allowed to happen, ok. So, the wave function is limited or

the value or the only possible solutions of the wave function must be limited by these

criteria by this integral. 

(Refer Slide Time: 45:07)

So,  let  us  look  at  what  is  the  Schrodinger’s  equation.  So,  as  we  mentioned  the

Schrodinger’s equation is  an energy conservation equation,  which equates the kinetic

energy to the, which says the kinetic energy plus the potential energy is equal to the total

energy. Now, you have already seen the kinetic energy operator and we found that this

operator  operating  on  the  wave  function  yields  the  term  for  the  kinetic  energy  the

potential energy is dependent on the potential terrain or the potential profile in which this



wave particle sets and based on the different experiments or the different models that we

study this  potential  terrain needs to be identified and defined correctly. And the total

energy which is the summation of the potential and kinetic energy is given by the total

energy operator operating on the wave function. So, this is the total energy. 

Now, in  this  definition  we find that  the total  this  is  a  time dependent  Schrodinger’s

equation, because the total energy has got a derivative of the wave function with respect

to time but it is also possible to study the time independent Schrodinger’s equation. So,

for example, if we want wave functions or solutions that describe the stationary states,

ok. You can solve something called as the time independent Schrodinger’s equation in

which case the total energy is simply treated as a constant, ok. 

So, we lose the time derivative and we write Schrodinger’s equation as the kinetic energy

plus the potential energy is equal to the total energy. And from this point on we will try to

use the Schrodinger’s equation to try and describe some simple models, which will help

us understand the nature of the wave particle and different potential profiles better.


