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So, the next is the positive definite matrices. So, a symmetric n cross n matrix Q is positive

definite. If this quadratic form that is x transpose where x is a vector, Q is the symmetric

square matrix; symmetric matrix meaning to say that the transpose of that matrix is equal to

the matrix itself, right. And, this is always greater than 0 for all x belonging to the n

dimensional space excluding the null set because right if x is 0 then this inequality would not



hold. So, when this greater than sign is replaced by less than sign, we obtain the definition of

a negative definite matrix.

So, both these positive definite matrices and the negative definite matrices are always

nonsingular matrices and their inverses are also positive definite and negative definite

respectively. So, now, when this greater than sign changes to either greater than or equal to or

less than or equal to then those matrices are defined as the positive semi definite or the

negative semi definite, right.
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So, this is one of the important results with respect to a positive definite matrices. So, the

following statements are equivalent for asymmetric square matrix of dimension n, then Q is a

positive definite matrix which is equivalent to saying that all eigenvalues of that matrix are

strictly positive.



So, if Q is negative definite then all eigenvalues of that matrix are strictly negative, right

which is equivalent to saying that the determinants of all upper left sub matrices of Q are

positive and vice versa. If the matrix is a negative definite which is again equivalent to saying

that there exist another square non-singular real valued matrix H; such that the matrix Q is

basically the multiplication of the transpose of that matrix with itself, ok.

Another result we have that for a positive definite matrix Q we have let us say this is the

relationship what we have been studied. Now, the minimum value of this quadratic form is

given by lambda min of Q and lambda min defines the smallest eigenvalue of the matrix Q

multiplied the squared norm of x to vector x. The largest value would be, the or it would be

less than or equal to the largest eigenvalue of the matrix Q multiplied by the squared norm of

the vector x. 

And, since we know that Q is a positive definite matrix, this would always be greater than 0;

this is in fact, definition of the positive definite. So, this 0 would be the lowest value, ok.
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So, let us consider one basic example before moving to the definitions of stability. So, this is

a simple pendulum what we have been seeing in you your wall clocks particularly. So, here in

the first; so, these two equations defines the basic equations of motions of a simple pendulum

where the torque are balances out where Q is the damping torque influenced by the external

force u of t, ok.

Now if you are considering a special case of heavy damping that is b by I is very greater than

number 1, then this relationship can be simplified to this equation. Now, here since u is the

external force applied to the simple pendulum if we consider u naught is equal to 0, and we

plot the graph between the x dot as the y axis and x is the x axis is the variable x itself, then

this is how the motion is defined because it is the pure sinusoidal function scaled by the

vector mgl by b, ok.



Now, if we want to determine the stability of the system how we can do this analysis. So,

since it is pretty much straight forward to see that this system is non-linear system because of

sinusoidal function. So, here we determine the stability around the steady state values, by the

steady state values we mean to say at those points where x dot is becoming 0 in these

equations of motion.

So, if you see a close look at this picture, all these points are the points where x dot are is

becoming equal to 0. So, we are interested in seeing the stability of these steady state or at the

equilibrium position. So, around let us say if we want to limit our time interval within which

we want to do the analysis, let us say it is given by 0 to pi.
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So, in this interval we have two equilibrium points, theta is equal to 0 and theta is equal to pi.

In fact, the equilibrium points are over the entire axis is theta n pi where n is from minus



infinity where n is an integer from minus infinity to infinity, and the even multiples of n

basically defines the 0 and the odd multiples of pi basically is given by these approach, right. 

So, let see the motion with respect to different initial conditions, let say if the initial angle of

this pendulum is at 0 degree. So, this will not move this will always be stay there. Now, if I

give if I initialize this motion of the pendulum let say at an angle of 45 degree it feels

certainly makes such kind of oscillation of smaller amplitude in the x axis and then finally, it

will settle down at theta is equal to 0.

Now, again if I keep increasing to 90 degree by possibly it would make a larger deviation, but

ultimately it would settle down at theta is equal to 0; similarly, 135, 170 up to just before 180

degree, right. Because, if I initialize the pendulum at an angle of theta is equal to 180 degree,

it would not stay at theta is equal to 180 would certainly fall down and come to theta is equal

to 0. Meaning to say that theta is equal to 0 is basically the point where if I initialize between

let say 0 to 1 7 or 0 to just before 180 degree, it will always settle down at theta is equal to 0,

but it will never settle down at theta is equal to pi.

This we can also see in this figure as well that this point is theta is equal to 0 and this point

theta is equal to pi. So, if I initialize at any point just before 180 degree the motion will

always settle down in this direction. But, if I initialize at 180 degree and if I see larger interval

either it would go towards here or go towards their with respect to this point, but it would

never rest on at this point.

So, the question arises here among these two points, which point is the stable point and which

point is the unstable point? Now, how we can define this formally is what we are going to see

the next.
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So, in the sense of Lyapunov we can define a system steady state x s for the simple pendulum,

we have 2 steady states in the interval 0 and pi, right is said to be stable if for each possible

region of radius epsilon a positive epsilon around the steady state. There is an initial state x

naught at t is equal to t naught falling within a radius delta which is again a positive number

around the steady state that causes the dynamic trajectory to stay within the region. The

absolute value of the difference between the x and the steady state is less than the epsilon, the

given epsilon for all time t greater than t naught.

So, if we want to visualize this definition, let us say consider a second order system we mean

to say having 2 state system x 1 and x 2, and we draw 2 circles of radius one epsilon and

another one is delta inside this epsilon, ok. So, if I initialize my system at this value x naught



which is inside this delta then for the whole time axis that is t tends to infinity, my trajectory

will not leave this outer circle it will always stay in the circle.

Now, if we are wondering about the time axis, the time axis is perpendicular to this plane.

The cross sectional view is given by here, here where you are initializing at x t naught inside

this in a circle sorry, but for the whole motion that is t tending to infinity, this trajectory

would never leave the outer cylinder of radius epsilon, ok.

So, this is the same phenomena which we had seen in the simple pendulum example that if I

am trying to see at the steady state x is or theta is equal to 0. The same kind of motion I would

going to see, but if I am trying to visualize this definition at theta is equal to pi, it would

certainly leave out the outer rings outer cylinder with the radius epsilon.
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Now, another definition is about the asymptotic stability that if it is both stable in the sense

we have defined in the previous slide and in addition. There exist a region of initial

conditions of radius delta naught which is again positive around the steady state. This is the

steady state point for which the system approaches the steady state as t tends to infinity; now,

this steady state could be 0 also.

So, like in the case of the simple pendulum one of the steady state was 0. So, basically we are

finding the region of the initial conditions of radius delta naught, that if I initialize my system

with those in with the initial condition line in that circle it will always reach towards to the

steady state value.
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The last definition the system steady state is said to be unstable of course, when it is not

stable.
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Let us see how what do we mean by that in the sense for the linear state system we had seen

in the first week. So, consider the following continuous time linear time invariant system

where the linear system is given by the A B C D matrices which are time varying and the

dimension of this x u and y are given by n, k and m respectively,.

So, we define for this linear system that the continuous time linear time varying system is said

to be marginally stable in the sense of Lyapunov or internally stable whenever for every initial

condition x naught. The homogeneous state response given by this is uniformly bounded their

phi is the state transition matrix initialize at t naught and we are seeing the response at time t,

right. It is the system is asymptotically stable again in the sense of Lyapunov we need to say



the definition, what we had seen in the last slide that whenever in addition to the above the

first point for every initial condition x naught we have that x t tends to 0.

Now here, I have chosen the steady state value to be 0 at the outside as t tends to infinity, ok.

Exponentially stable that whenever in addition there exist constants c and lambda both are the

positive scale of values. Such that for every initial condition x naught, the norm of the signal

x of t is always less than equal to c into e to the power of lambda t minus t naught and the

norm of the initial condition.

So, this exponential stability we had not seen in the definition earlier, but the, but for the

linear systems we know already that the response is basically an exponential response;

particularly for the linear system irrespective of whether are you in the time may be in case or

the time varying case. So, this is the reason we have included about the exponential stability

since the response is kind of an exponential behavior ok. Again, I am stable when it is not

marginally stable in the Lyapunov sense.

So, all those definitions we had seen in the last couple of slides those definitions can be set

specifically to the linear time varying system in this particular sense. So, here you would see

in the first point that I need to compute the response of the system and by computing the

response. I need to basically compute this part which we had already seen in the last week

which is quite difficult to compute the state transition matrix if it is a time varying case. 

So, either I compute the solution because if the once the solution is available to me for the

time starting from the initial value to up to t tends to infinity if the trajectory is bounded or the

trajectory is reaching towards to 0, I can speak about the stability, but for that I need to

compute the solution. So, here we will see that without even computing the solution, how we

can determine whether the system is stable or not.
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So, one important thing to notice here is that although we have defined the system in terms of

the A B C D matrices. So, the rest of the matrices except the A matrix played no role in the

above definition, only the A matrix because this matrix completely defines the state transition

matrix. Therefore, in the director of the slide we will going to talk about the Lyapunov

stability only of the homogeneous system. 

Because, if the matrix A which is completely defines the state transition, matrix A is stable

than the B C D matrices generally played no role in determining the stability. So, there are;

so, if you tried to relate those definitions with the example we had considered that for

marginally stable systems. What we are trying or what are what we are interested in that the

effect of initial conditions does not grow unbounded with time right, but it may grow

temporarily during a transient phase.



So, when we were computing the response of the system, the system start with some transient

and settle down that some steady state. And, the definitions what we have introduced only

speaks about at the steady state whatever is happening at the transient state we are not the

stability in general is not concerned with that, ok.

Now, for the asymptotically stable systems, the effect of initial conditions eventually

disappears with time and for unstable system. The effect would grow overtime depending on

the value of the C matrix that how fast and how slow it is growing, ok.
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So, let us see the eigenvalue conditions for the Lyapunov stability, this is in fact, the first test

of determining the stability where you do not need to compute the solution system. So, it is

said already that we starting for the linear time invariant system where A matrix is no longer



are time dependent. So, we want to compute the stable or determine the stability without

explicitly computing the solution of the system, ok.

So, this is one of the important results and possibly you have seen in the ug control course

that the system homogeneous continuous time linear, time invariant system is marginally

stable if and only if all the eigenvalues of A have negative or 0 real parts, ok. Now, if some of

the eigenvalues are having the 0 real parts then those eigenvalues should be simple

eigenvalues or simple roots meaning to say they must not be more than at most 1, more than

1, ok. 

So, the system is asymptotically stable if and only if all the eigenvalues of the matrix A have

strictly negative real parts; now, just to recall about computing the eigenvalues of the matrix

A. Let us say we have this matrix a then you can compute the eigenvalues by lambda I minus

A, where I is the identity matrix of the same dimension of what A is having and then

computing the determinant of this matrix. Then, once you have the polynomial in terms of

lambda equate it to 0 and then you compute from here all the lambdas. So, all these lambdas

are basically the eigenvalues of the matrix A, ok.



(Refer Slide Time: 19:29)

The third is unstable if and only if at least one eigenvalue of A has a positive real part or 0

real part, but the corresponding Jordan block is larger than 1 cross 1. Again, if you have zero

eigenvalues either it could be a stable or unstable, it would be stable if it is simple, if it is not

simple then it could be unstable, ok. So, here one important thing if you want to related with

the transfer function, let us say we have a transfer function given by 1 by s, a simple

integrator. 

Now, for any constant input you for any constant input you would see that the response is

rising is would integrate, right; the response could integrate for any initial condition the

response would become constant. So, what does it mean that the if I am using the integrator

with respect to the initial condition then it would be bounded right, but it would not be

asymptotically stable because the response will never go towards zero.



Now, let us say if I have a transfer function 1 upon s plus 1, I know that the response is

exponential that would be in the time domain, it could be e to the power minus t. So, as t

tends to infinity the response would die out. So, this such kind of system having this transfer

functions are asymptotic stability.

Now, consider if we have 1 upon s square irrespective of any initial conditions or any input

the system will always be unstable, right. So, that is why we say that if we are having an

eigenvalue or the roots or the poles of the transfer function at 0, then it should be a simple

root. But, here the roots are not simple because here at 0 we are having 2 roots or in other

sense we have Jordan blocks corresponding to eigenvalues with zero real parts more than 1

cross 1, ok.


