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Welcome everyone. Today is the 3rd lecture on non-linear dynamical systems. This is

between Madhu Belur that is me and Harish K Pillai. So, we had just begun with phase

portraits of second order systems last week.

(Refer Slide Time: 00:33)

So, consider this differential equation x dot is equal to Ax in which A is a 2 by 2 matrix and

now we are trying to see various situations, various situation that arise depending on whether

the eigenvalues of A are real or complex whether that repeated or distinct whether A is



singular or non-singular. So, the eigenvalues of A let me recap are the roots of the

determinant of sI minus A and this decides eigenvalues decide the key features. 

So, we will begin assuming that A has no eigenvalue at zero which means A is non-singular

in such a situation the origin in the plane is the only equilibrium point. The different types of

equilibrium points for this situation are center which we had just begun seeing. The node in

which case it can be a stable or unstable node, then there is a focus, a stable or unstable focus,

a saddle point and some other situations which for example, when there are repeated roots

and when there is one or more eigenvalues at zero; those are the situations we will see

separately.

(Refer Slide Time: 01:45)

So, a stable node, a node can be stable or unstable. So, what is a node? It is a situation when

A has two distinct eigenvalues and both are negative. In such a situation it is called as stable



node. The other situation when A has both real eigenvalues and positive is called an unstable

node. To analyze this we will quickly see how the vector field looks for this particular A.

(Refer Slide Time: 02:14)

So, look at this figure, this is not the same example that is there on a slide, but it explains

what is an what is a stable node. This is the x 1 axis, this is the x 2 axis. What this says is if

you are along the x 1 axis, then because x 2 component is 0, when A acts on such a vector

again the x 2 component is 0 that is the significance of a diagonal matrix A. And, similarly

along the x 2 axis x 1 component is 0 and this diagonal entries being negative imply that that

is also along the x 2 axis the arrows.

The relative distance, the relative length of the arrows certainly depends on the x 1 and x 2

components, but then as far as this picture is concerned as far as qualitative study is

concerned this explains how the various arrows are. So, the origin, the unique equilibrium



point appears to be a stable node. It is a node all arrows are directed towards it, there is no

rotation involved because the off diagonal elements are equal to 0 and all arrows are directed

towards the origin. This is what we saw as a stable node, we will later see that it is

asymptotically stable in the sense of Lyapunov.

(Refer Slide Time: 03:54)

Let us quickly see what an unstable node is, take the same A except that the diagonal

elements have sign opposite. Again, because of the diagonal nature of A along the axis the

arrows are parallel to the axis themselves with careful attention to the arrows whether they are

in the positive direction of x 1 or negative direction of x 1. It will be away from the origin

because of the positive sign of the diagonal elements.

The off diagonal the for points which are not along the x 1 axis by just superimposition,

because this is a linear vector field by superimposition. For example, if this point the x 1



component of this arrow can be obtained by this point and the x 2 component of the arrow

can be obtained by the arrow at this point. This is a net arrow. So, this is what we can obtain

by superimposition because, A is a linear map because, we have a matrix that decides the

vector field at different points.

(Refer Slide Time: 05:15)

So, before we go to stable and unstable focus we will quickly see what diagonal has got to do

with what we are studying. So, if we are given with a general A let us say 4 5 6 7. So, I am

just guessing the various elements and suppose the entries are such a 11, a 12, a 21, a 22,

suppose the entries are such that this matrix is diagonalizable, it may not be diagonal itself. In

other words a 12 and a 21 might not be 0, but if it is such that there exists a non-singular

matrix T such that T inverse AT is equal to a diagonal matrix.



Then by choosing the columns of T as a bases, we still have this decoupled vector field,

decoupled vector field like we saw for x 1 x 2 we can see it is not along x 2 x 1 x 2 axis

anymore. But, suppose this is 1 column of T 1 and suppose the other column of T 2 is like

this, in general the 2 columns need not be perpendicular to each other. Suppose, this is

eigenvector v 1 this is eigenvector v 2 and suppose this eigenvector corresponding

corresponded to the eigenvalue lambda 1 and this correspondent to eigenvalue lambda 2.

These are the x 1; x 1 x 2 axis these are not the eigenvectors, more generally eigenvectors are

vectors v 1 and v 2 which may or may not be perpendicular to each other. These eigenvectors

are corresponding to eigenvalues lambda 1 and lambda 2. So, if lambda 1 is negative, then we

can draw the arrows just like we have drawn for a stable node. And, if lambda 2 is also

negative these arrows also can be drawn towards the origin and other places the arrows can be

filled again as I said by superimposition. So, more generally if A is diagnosable we have 2

directions called eigenvectors along which we can draw the arrows either towards the origin

or away from the origin; depending on whether lambda 1 is negative or positive respectively.

In which case again we are able to decide whether the node is a stable node or unstable node.

Our assumption till now has been that both the eigenvalues are of the same sign. When they

are of different sign that is the next thing we will see, sorry before we see the situation when

the eigenvalues have opposite sign we will start with what a center is.
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(Refer Slide Time: 07:49)

So, this is the situation when A has purely imaginary eigenvalue; take for example, this

because of this particular form and in which the diagonal elements are equal to 0, the

eigenvalues are plus minus 3 times j. So, this corresponds to as I said rotation about the origin

either in the clockwise or the anticlockwise direction which we will decide very quickly. So,

take a point along the x 1 axis, suppose this point is equal to 4 comma 0.

The point on the x 1 axis has x 2 component equal to 0, when matrix A acts on this we get

minus 12 sorry 0 comma minus 12. We see that we get a vector which is parallel to the x 2

axis and in the negative direction. So, this is the arrow at the point 4 comma 0. Similarly,

when we draw these arrows at different points we see that, we have a rotation in the

clockwise direction. Every point except the origin is, if we start at any point then we are

continuously rotating.



And, it turns out that the vector A times v is perpendicular to the vector v itself. So, if we are

at any point v then the arrow at that point Av that is perpendicular to this. And, we see that

this is nothing, but what corresponds to pure rotation in which the velocity is perpendicular to

the radius vector. The clockwise or anticlockwise just depends on whether the sign whether

we have a plus sign here or a plus sign here. So, this other example that is there on the

computer corresponds to an anticlockwise rotation because, we have a negative sign here and

a plus sign here. We have a anticlockwise rotation for the second example of A and both the

A’s correspond to periodic orbits, with the number 3 indicating the frequency.

But, since we are interested only in a qualitative study, the precise value of the frequency is

not significant. Another important point to note here is we have a collection of periodic

orbits. For each initial condition the radius, the distance from the origin decides which

periodic orbit it is. The x 1 x 2 space itself is made up of periodic orbits which are all very

close to each other which form a continuum. From each initial condition x 1 x 2, there is a

periodic orbit, unique periodic orbit going around it.

And, if we go a little away or little closer to the origin then we have another periodic orbit.

So, for the situation that A has imaginary axis eigenvalues, we have a continuum of periodic

orbits and for a linear system it is not possible to have isolated periodic orbits. For a as we

saw in one of our introductory lectures that we can have isolated periodic orbits for a

non-linear system. But, for a linear system when we have periodic orbits it appears that we

have a continuum of periodic orbits. In other words, if we start from a slightly different initial

condition then we very unlike, it is very unlikely to be on the same periodic orbit.

If we are on this periodic orbit starting from this initial condition unless we are perturb,

unless we perturb the initial condition to another point on the same periodic orbit, the

periodic orbit is going to be different. If it is from this initial condition, then this initial

condition corresponds to a different periodic orbit which means a different amplitude, even

though it is a same frequency. So, this is a inevitable situation with linear systems when we

have periodic orbits.
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The next type of equilibrium point we will see is when A has complex eigenvalues and these

eigenvalues are not purely imaginary.
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So, take for example, A equal to so, in which the diagonal elements are equal to minus 1 and

the off diagonal elements have opposite signs one is plus 2, one is minus 2. So, this we will

call is a stable focus, as I said the off diagonal elements cause rotation about the origin; each

of these cases A is non-singular. Hence, the origin is the unique equilibrium point. So, let us

take an example of a particular point and decide where the arrow is when we are at this point.

So, this point for example, is 4 comma 0 when A acts on this, we get minus 4 and in the and

below we get plus 8. So, this is a vector which is like this, there is minus 4 component

towards origin and 8 component along the positive x 2 direction because of which we have

this. So, when we take different points we see that it is no longer perpendicular to the radius

vector, but it is directed inwards. So, every point it turns out that we have some rotation and

eventually the trajectories come to the origin.



For example, at this point if you draw the arrows at different points all trajectories seem to be

approaching the origin, even though they do not approach the origin in finite time. So, each

trajectory these trajectories do not intersect, but they all approach the origin and they reach

the origin only asymptotically. So, this is a stable focus and unstable focus is also very easy to

see, only that the diagonal elements have positive sign.

(Refer Slide Time: 14:25)

Now, all the arrows are directed away from the origin, also the rotation has been reversed

because the signs of this and the previous example have been interchanged. So, here is an

example where the arrows are all directed outwards. So, we have at any point we have

trajectory that is going away, different points are all going away from the origin. So, this is

what we will call an unstable focus finally, we will see what is a saddle point.
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So, the situation when A has real eigenvalues one positive one, one negative; again for

simplicity we will start with the diagonal case.



(Refer Slide Time: 15:34)

The time because, it is diagonal again we have a decoupled nature of the phase portrait. So,

we see because A is equal to minus 1 0 0 plus 2 along the x 1 direction its approaching the

origin, while along the x 2 direction is going away from the origin. And, any other point is a

super imposition of these two features. So, we see that unless the x 2 component is equal to 0

which means we are along the x 1 direction all trajectories are coming towards the origin.

Any other point where the x 2 component is non-zero, while the x 1 component is still

decreasing the x 2 component is going to blow up.

Why? Because, the solution to this differential equation x 1 t, x 2 t because it is diagonal can

be easily written as e to the power minus t times x 1 0, e to the power plus 2 t times x 2 0. So,

unless the initial condition has x 2 component equal to 0, the x 2 as a function of time is

going to grow exponentially. On the other hand, if the x 1 component is non-zero it is going



to decrease and eventually become close to 0 asymptotically. So, this is what we will call a

saddle point. The question arises is the saddle point stable or unstable equilibrium point?

We see that while the origin is an equilibrium point, for very small perturbations about the

origin trajectories either come to 0; if they are along the x 1 axis or they do not come to 0, if

they are not along the x 1 axis. In any case there are certain very small perturbations such that

the trajectories when they begin from the perturbed initial condition, do not approach the

equilibrium point. So, in other words there exists; so, this is the symbol for there exist, there

exist initial conditions. These initial conditions are close to the origin; close to the origin.

What is significance of the origin? It is an equilibrium point, there exist initial conditions

close to the origin such that the trajectories are not coming close to the coming back to the

origin. So, we have in fact, the trajectories are growing, trajectories are becoming unbounded.

This is precisely the property that decides that the equilibrium point, the origin is an unstable

equilibrium point. So, the saddle point is an unstable equilibrium point, it is not an unstable

focus nor an unstable node that equilibrium point is just an unstable equilibrium point.
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So, what is saddle about this? So, the graph of the Lyapunov function we will come back to

this later. This graph in a 3D plot looks like a saddle of a horse, that is a reason that this

equilibrium point is called a saddle point.
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So, before we go to the other situation, where there are repeated eigenvalues or one or more

eigenvalues at the origin; we will just quickly recapitulate what was done. So, we have seen

the situation when there are distinct real eigenvalues. When both are positive or both are

negative or when they have opposite signs, then we saw the situation when the eigenvalues

are both complex. In which case, if they are on the imaginary axis we call it a center; this is

the one that corresponds to periodic orbits and we saw that we will have a continuum of

periodic orbits.

For the situation at the eigenvalues are complex, if they are on the imaginary axis then it is

called a center; when the real part is negative we call it a stable focus and when the real part is

positive we call it an unstable focus. So, whether it is stable or unstable depends on the real

part of the complex eigenvalues. Now, the next situation, last situation that is remaining to be



seen as when there are repeated eigenvalues and also the situation when one or more

eigenvalues are at the origin.

(Refer Slide Time: 20:13)

Coming back to the matrix A, when there are repeated eigenvalues that time the matrix A

may or may not be diagonalizable. See suppose we have a repeated eigenvalue lambda 1 and

if A is diagonalizable, that is in we will like to put a 0 here. And, if A is not diagonalizable

then we put a 1, this is called the Jordon canonical form for the this case when there are

repeated eigenvalues and A is not diagonalizable; we are restricting ourselves to the 2 by 2

case. And, this is the Jordon canonical form for the case when eigenvalues of A are repeated,

but A is diagonalizable.

So, what is the significance of a diagonalizable matrix? We saw that the eigenvectors are so

called invariant directions. In this particular example x 1 and x 2 directions are themselves



eigenvectors. If we are along an eigenvector then lambda depending on lambda 1 being

positive or negative, the arrows are directed either away or towards the origin. So, this is the

case when lambda 1 is greater than 0. Let us restrict our study for that for that situation. The x

2 direction is also an eigen direction, is also an eigenvector and because lambda 1 was

positive it is again directed away from the origin.

So, we see that the eigenvectors are the invariant directions. What is invariant about it? If the

point starts along an eigenvector because, the arrow is also directed along the eigenvector we

continue in that direction. So, we there is no tendency to move out of an eigenvector. Let me

repeat eigenvector v is a non-zero vector such that Av is just a scaling of the vector v. So, we

are interested in the first eigenvector v 1 which is nothing, but eigenvectors are not unique in

magnitude. We can scale this vector to any number by any number and also get an

eigenvector. So, it is a non-zero vector that satisfies this equation.

So, this v 1 if we are along this direction, if we are at a point v 1 then the vector is parallel to

the vector v 1 because, of this particular equation. And, hence the trajectory will remain along

that particular direction, if we start here then there is no reason to come out of the x 1 axis.

Similarly, if we are here we will remain along the x 1 axis, similarly here x 2 also being an

invariant direction; being an eigenvector it continues to be along the x 2 axis. So, we see that

there are this particular complex plane contains certain invariant sets. What are those

invariant sets?
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So, we will define, the plane R 2 is made up of invariant sets. So, what is this invariant set? A

set S is called invariant, in this case it is invariant under the dynamics of the differential

equation x dot is equal to f of x. If we start inside this set S then we will remain inside the set

S for all future time is called invariant; invariant means under the dynamics under the

dynamics of f if we start inside S, then x of t is also going to be inside S for all for all t greater

than or equal to 0.

So, that is the significance of an invariant set that a set S which could be a subset of the plane

R 2 or it could be the plane R 2 itself, it is said to be invariant if, if the initial condition is

inside S then the entire trajectory is inside S for all future time. Hence, this is also called a

positively invariant set. What is positive about it? Because, we are interested only for positive

values of time t, x of t is inside S.
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So, what is what are the invariant sets inside R 2? If we have this differential equation and let

us take the special case when matrix A acts on the vector x and A is 2 by 2 which means x

has 2 components. So, of course, R 2 plane itself is an invariant set. Why? Because, if it

begins inside the set R 2, there is no reason it will leave the plane R 2. If the origin, the origin

is an equilibrium point 0 the set S consisting of of just the origin yeah; S consists of only

origin.

This is also an invariant set. Why? Because, if it begins inside this set S because it is an

equilibrium point, it will remain at the equilibrium point for all future time and hence the set

S is also an equilibrium is also an invariant set. So, all equilibrium points is an invariant set.

For this particular case when A is a diagonal matrix, for this particular A there are some more

invariant sets.
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So, take the set S which is defined as all the points where, x 2 is equal to 0, the set the set of

all points x 1 comma x 2 such that x 2 is equal to 0. This set is also an invariant set. Why?

Because, if we are along the x 1 direction because A was a diagonal matrix; because it was a

diagonal matrix x 1 axis itself being eigenvector we see that the set S 1 which is defined to be

the x 1 axis is also an invariant set. Of course, the S x 1 axis itself contains the origin, it is

also an invariant set.

In other words another let us call the set S 2, defined as all points x 1 comma x 2 such that x 2

is equal to 0 and x 1 equal to 0 which is nothing, but the equilibrium point is an invariant set.

But we are interested in some nontrivial invariant sets for example, we could take x 1

positive. This particular situation is along the positive x 1 direction excluding the origin, this



is also an invariant set. If it is once inside the set S 2, it remains inside the set S 2, consider S

3 which is the same x 1 comma x 2 except that now x 1 is negative.

This is another invariant set which corresponds to the negative x 1 axis, if the point starts here

then it is going to always remain on the negative x 1 direction. So, these are different

invariant sets. So, we are usually not interested in the equilibrium point as an invariant set.

We are also not interested in the plain R 2 as an invariant set, because these are the trivial

invariant sets; we are interested in some more sets which are larger than the equilibrium point

and smaller than the set R 2 which are invariant under the dynamics of f. 

And, the eigenvectors are examples of such invariant sets, eigenvectors the entire null, entire

direction except the origin is also an invariant sets. And, the two sides of this eigenvector one

on the positive side one on the negative side of the origin also form invariant sets.
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So, coming back to the case when A is diagonalizable, for that situation as we saw in some

basis A already looks diagonal. So, we have x 1 axis which is an invariant direction, x 2 axis

which is also an eigenvector; hence that is an invariant direction. And, it turns out that this

invariance, these two direction been invariant is not particularly related to the eigenvalues

being distinct. For the case when A has repeated eigenvalues, but if it is diagonalizable it is

still is a unstable node.

Of course, in this case every direction is an invariant direction, is every line through the origin

is a invariant set; because the two eigenvalues are repeated. But, for the situation when A is

not diagonalizable; so, let us consider the case when A is equal to 2 0, but with a 1 here. This

example of an A has only one eigenvector so, other eigenvector is what we want to call a

generalized eigenvector.
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This A, which A are we dealing with now. We see that the x 1 axis, if we take the vector v

equal to 1 comma 0, Av is nothing, but 2 times v. So, the x 1 axis is a invariant direction and

all arrows are directed away from the origin. But, there is no other invariant direction, there is

only one independent eigenvector. And, hence if you take an example let us say v is equal to

1 comma 1, when A acts on v we get 3 comma 2; let me check this yeah. So, for this

particular vector at 1 comma 1, the vector has it has both x 1 x 2 components of that arrow

non-zero.

So, we see that because there is only one independent direction, x 2 axis is no longer than

eigenvector, but there are these other arrows that cut. How exactly they cut? They depend on

the particular form of the Jordon canonical form, but along the independent axis there is only

one x 1 direction. So, this is a significance of a non-diagonalizable A, that there is only one

eigenvector x 1 and everything else is emanating out of this x 1 direction if it is very close to

x 1. But, x if it is along the x 1 axis, then x 1 axis is being an eigenvector is a independent is a

invariant set under the dynamics of f and hence, it does not leave the x 1 axis.
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So, this brings us to the final case when A is singular, when A is singular there might be one

or more eigenvalues at the origin.



(Refer Slide Time: 32:44)

So, let us see the case when there is only one eigenvalue at the origin first. So, when A is

singular it means that there exists a non-zero vector x naught; since that Ax naught is equal to

0. This x naught is also said to be in the nullspace of the matrix A, the origin is always there

in nullspace. But, when A is singular there are some non-zero vectors also sharing the

nullspace. And, such a non-zero vector x naught is non-unique.

Why? Because, if you are given with x naught then we can multiply x naught by a real

number b and also get the b x naught to be in the nullspace of the matrix A. So, all these

points x naught, b x naught any scaling of the vector x naught are all equilibrium points.

Why? Because, they satisfy the derivative of x at that point evaluated at the point x naught is

obtained by A acting on x naught which is equal to 0. So, we see that in this case all the

equilibrium points are connected, they form a line.



The nullspace which is a linear subspace, in general they form a subspace and in our case

because A has only one eigenvalue at the origin, they form a line. So, as we have seen in the

beginning of the series of lectures, we saw that isolated equilibrium points is not possible for

a linear system. For a linear system the equilibrium points as we have seen happen to be in

the nullspace of the matrix A. If there are some non-zero vectors in the nullspace then they

are all connected, they form a line. So, the isolated equivalent points is possible only when we

have a non-linear dynamical system.

(Refer Slide Time: 34:30)

So, we have just begun seeing the repeated eigenvalue case. When A has repeated

eigenvalues A may or may not be diagonalizable, we will quickly review this part. So, when

the eigenvalues are repeated, then they have to be real for the case that A is 2 by 2 matrix. If

they are if the matrix is diagonalizable then we have two independent eigenvectors, then each



eigen space is an invariant sub space. Invariant meaning it is invariant under the dynamics of

the system.

But, it is also possible that we have only one independent eigenvector in which case other

directions either turn towards this or turn away from this depending on whether the

eigenvalue is positive or negative. So, one can have a look at how the arrows look using

‘champ’ command in Scilab or ‘quiver’ command in MATLAB, when A is singular. So take

for example, A equal to in this case this is a example such that A x naught is equal to 0.

This is of course, not the only vector x naught that satisfies Ax naught equal to 0, because any

constant minus 5 times x naught also is in the null space; also in the null space is also said to

be the kernel of the matrix A. So, what is the significance of this? We see that the x 1 axis is

the eigenvector, but corresponding to eigenvalue is 2. And, hence we will draw the arrows

away from the origin, but the x 2 axis are all equilibrium points so, each of the arrows I have

length 0. So, if the x 1 component is non-zero, then we see that the trajectories are having that

x 1 component increasing as a function of time, increasing with exponent equal to 2.

But, the x 2 component is always going to become equal to 0, when A multiplies to it. And,

hence; and hence we see that these arrows are all parallel to the x 1 direction first of all. And

secondly, along the x 2 axis because x 1 is equal to 0 along the x 2 axis all these points are

equilibrium points, they form a connected set. The origin is not the only equilibrium point for

this example, but each of these points are equilibrium points. So, this is what we see for the

case when A has one eigenvalue at 0.
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The next example is when A has both eigenvalues at 0, this is again an example of repeated

eigenvalues. So, let us first take when A has two eigenvalues at 0 and when A is

diagonalizable the reason we have 0 here. So, A is a 0 matrix so, the entire R 2 plane is made

up of equilibrium points. Any point x 1 comma x 2 is an equilibrium point. Why? Because

what does this matrix say? x dot is equal to 0 times x which is equal to 0 for any point; for

any point x 1 comma x 2. So, this is the less interesting case, but still this situation is likely.

The other situation when A has repeated eigenvalues at 0, but A is not diagonalizable is when

we have this for example.
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So, in this case we see that, if we have vector x equal to 1 comma 0 then Ax is equal to 0. So,

the vector 1 comma 0 and all linear multiples of this x are in the kernel of the matrix A, they

are in the null space of the matrix A. And, hence the x 1 direction is a set of equilibrium

points. What is important about the x 1 direction? They all have x 2 component equal to 0,

but if we take a vector v which is equal to 2 comma 3 in particular the second component x 2

component is not equal to 0. This particular vector here when A acts on v, we get something

that is parallel to the x 1 axis.

So, we see that the arrows look like this, they are all in increasing direction of x 1; when x 2

component is positive and they are all along decreasing direction of x 1, if the x 2 component

is negative. Why? Because, A is this matrix and A acts on a vector v it gives us the second

component of v as the first component of A times v. So, this is an example where we have

only one x 1 axis which is the equilibrium point, set of equilibrium points. And, every other



vector is being turned towards either positive direction of x 1 or negative direction of x 1

depending on whether x 2 component is positive or negative.

So, this complete our study of equilibrium points for second order systems. We have seen the

case when A has repeated eigenvalues, distinct eigenvalues and when A has real or complex

eigenvalues.


