
LDPC and Polar codes in 5G Standard
Professor Andrew Thangaraj

Department of Electrical Engineering
Indian Institute of Technology, Madras

Rate Matching in LDPC Codes using Puncturing and Shortening

Welcome to this next lecture on LDPC codes, we will talk primarily about rate matching in

this lecture, ok. So I am going to describe rate matching a little bit first and then show how it

is implemented in the LDPC code here, ok.

(Refer Slide Time: 00:36)

So how is rate matching done, so like I said let us take the base graph 1, this if you remember

is a 46 by 68 matrix, it has these forms, so it has let me just draw a small visualization for

you, 46 by 68, ok there are this first 22 columns, block columns which correspond to the

message, ok so maybe I will put that somewhere here, this is 22 block columns, ok and then

the remaining of how many is remaining after this 46 are parity, ok and if you remember

there is the stop 4 by 4 which is dual diagonal, ok and then you have the diagonal, right so ok

so this one right a little bit of so draw like this, this one is the diagonal part, this is double

diagonal, you remember this when I spoke about the structure and the encoding.

So the first two columns, the first and the second block columns out of this you will see these

are high weight columns, so high weight meaning there are lot of entries which are not minus

1, ok so in rate matching the first thing that is always done is these two message blocks are

punctured, ok. So these two message blocks remember each block corresponds to Z this, the

expansion factor, ok so this is two times Z bits, ok this is two times Z bits of message and

they will never be transmitted, ok.

So they are always not transmitted, so the number of transmitted blocks, number of message

blocks equals 22, number of transmitted blocks equals to 66, ok why 68 minus 2 only 66 are

transmitted 2 of the block are message blocks but you do not transmit them but you expect to

recover them at the decoder, ok so on the because you do not transmit it does not mean that

the decoder should not the decoded, decoder needs to (exp) recover it at the receiver, that is

very important, ok so this 22 as the is the actual message blocks and 66 is the transmitted

blocks.

So the base rate, the lowest rate is 1 by 3, right so 22 by 66, if you transmit all the 66 blocks,

ok. So but usually what happens is further rate matching will be done, ok. So there are

multiple ways in which you can do rate matching one is shortening, ok. So let us say Z is

expansion factor 22 is the message blocks, so 22 times Z is the number of message bits that

you can send, ok but in your actual transmission you may not have 22 times Z bits, ok so you

may have only A bits, if only A bits are available, ok 22 Z minus A bits are shortened, are set

to zero, so this is the shortening process, alright 22 Z minus A bits are set to zero.

So now the standard will pick Z a bit wisely, ok so A will be the starting point in the standard

you will know how many bits you want to send and that in the base graph and the value of Z

will be carefully chosen, so that this 22 Z minus A is not too large, ok so you do not end up

shortening to many bits in your parity check matrix. So there is a logic for how the choice of

Z and the base graph are done etcetera, this is clearly specified in the standard I do not want

to go great in details here but 22 Z minus A bits are set to zero, ok.

So you may have a few shortened positions here, set bits to zero, ok this messages are set to

zero, after that you do the encoding, ok so you have the message bits, now all the message

bits are populated remember even the punctured bits are actually populated there use to in the

calculation of parity except that you do not transmit those bits, ok so you in the encoder you

fully use this.

So now the number of parity bits you produce is 46 times Z, ok so there is further puncturing

involved here, puncturing of parity, ok 46 Z is the number of parity bits produce at the

encoder, ok but you will not be transmitting all the 46 Z bits, ok so if only E bits need to be

transmitted, ok you will puncture remember there are A bits of message out of which two

times Z you already punctured, ok.

So E will have to be A minus, ok I am sorry I will right in other way E bits to be transmitted,

so E minus A minus 2 Z, ok right of the 46 Z parity bits are transmitted, ok. So remember

once again this is this whole thing is A bits, ok remember after expansion that is, ok and then

her you will send out maybe I should write it down a little bit here, you will send out how

many parity bits E minus A plus 2 Z bits, ok.

So that how you will send out total of E bits, ok. So all these guys are punctured, these

parities are not sent, ok, so this is how rate matching is implemented on the LDPC codes. So

several puncturing and shortening, there are two types of puncturing message bit puncturing

and parity bit puncturing, message bit puncturing comes on the left most side, the two blocks

are always puncture they never transmitted, ok and then there is some message bit shortening,

ok so if you do not have enough bits you picked your choice Z an a from only a finite number

of possibilities, so the A will be slightly smaller than 22 Z in most cases and then you set

those bits are zero and then you start sending parity is you send as many parity as you need,

so that the total number of bits you sent is E, ok.

So remember E is the total number of bits that you are sending, ok. So the actual block length

that you will be decoding will be E plus 2 Z right, So E bits you send is that right, so E bits

that you send A bit is the total number of messages and then 2 Z you punctures, so A minus 2

Z is the actual message bits that you will be sending, ok and then E minus A plus 2 Z parity

bits you will be sending together you will be sending E bits, ok so you send E bits, A bits was

the message the actual rate is A by E if you want to calculate all these things carefully but

remember there is some functioning going on, ok so something to keep in mind, ok.

So this is how rate matching is done , one can you can see how to modify the code to make

this happens, so it is quite easy to modify the code, so for an instance you do not send the first

two bits you simply do not send it, what do you do for the received values, ok supposing you

do not send the bits, ok how do you substitute the received values, in the received values you

put those values as zero, ok r equals zero, ok for punctured positions set r equals zero, ok.

So remember this is BPSK, BPSK is minus 1 and plus 1 is transmitted, ok so r equal zero is

in the middle, so for the punctured position you simply putting r equal zero, so it is in the

middle and you are not using, you are not committing to either side, ok particularly for the

punctured message positions are equal zero is quite crucial. Now the punctured parity on the

right side, right the on the diagonal part and the shortening actually what you should do is

you should disregard that part of the parity check matrix, this part and the punctured part of

the, ok I do not draw this correctly the punctured part of the parity check matrix are to be

disregarded, ok so this have to be disregarded in the decoding, ok those parts should not be

active, ok.

So depending on how you implement the disregarding might be a bit difficult may be the

disregarding of the punctured part, parity part will be easy disregarding of the shortening will

be a pain, so in case disregarding is a problem, ok so for shortened positions and punctured

parity punctured message positions, punctured parity disregard column in decoding, ok so

this is the right thing to do, if disregarding some columns and rows is not possible

particularly within a particular block then a good solution is as follows, ok.

So for shortened message you can set received value equals large positive quantity and for

punctured parity you can set r equal zero, ok so want empathize this once again so that it

might happen that within a certain block you are transmitting some bits and either shortening

some message bits or in the parity block you are puncturing some of the parity bits, ok. So in

those cases if within a block of few bits, few columns or rows you cannot disregard in the

decoding, nice short hand for a shortcut to simplify the received value to be a large positive

quantity for the short hand message bits and set the received value to be zero for the

punctured parity, so this will not have effect on the rest of the decode, ok.

So if you dealing with the real numbers I could say something like 20 is large positive value

but usually you are going to be quantizing and since you are used quantized values you take r

to be the largest positive value in here a quantized version, so if you are using say 6 bit

quantization minus 31 to minus 32 to plus 31 you set r to be plus 31, ok. So that is one

another way of dealing with the punctured parity and shorten message in case you cannot

disregard the whole thing, ok.

So there is an why disregarding whole thing may be slightly difficult as there are blocks, you

know so within a block maybe a part of it is being transmitted and part of it is being

punctured, ok then your coding will becomes too problematic if you want to disregard those

kind of columns, so block wise you may want to set the values like this and the whole block

may be disregarded otherwise, ok.

So this is the this is rate matching and the so what I am going to do is to illustrate what

happens in rate matching, maybe I will show you for one or two candidate possibilities with

this E and A, how to do it. The range of values of A and E and the choice of Z are tight down

in a strict way in the standard, ok. So it is sort of I do not want to go into that part of the

standard in this course, I do not want to talk about how A and E and Z are decided, so I will

just pick some value of A and E, how this may not be valid values as per the standard but I

will just pick some value of A, some value of E and then show you how this can be done, ok.

So I will pick it in a simple way, so that we do not have some shortening problems here and

there, so that something you can do the adjustment for, so this is the essential idea behind

puncturing and shortening, so you have to actually program it and then set to your received

values suitably depending on how the things happen, ok. So we will not go into great details

on to it matching I will just simply show you, point out in the code where are the changes that

you might have to make for this purpose, ok.

(Refer Slide Time: 14:45)

So let us go ahead and do that, ok so for instance here when you look at the code word, ok

when you look at r, ok so I the first 2 into Z are not transmitted, right. So you should not be

transmitting that first 2 into Z, ok so one way to do the rate matching is, so I wish I do right

matching, puncturing of message, ok. You simply said r of 1 colon 2 into Z equals zero, ok so

I have punctured it, I have know it actually transmitted it but that just and the messages just

all zero you might want to set it up as the actual encoding even if you actual encode, you

simply set the received values to 2 into Z, ok.

(Refer Slide Time: 15:39)

So that is something, so now remember this needs an adjustment in the rate also, so was the

number of code words bits for you it is not n be into Z, so in the rate you have to set this is n

minus 2 into Z, ok so that is one little adjustments that is one needs to make, ok. So that is the

first little thing as you know, this will make my rate 1 by 3 exactly and but I have set the first

thing to be punctured, ok.

(Refer Slide Time: 16:13)

So now in addition instead of number of code word bits if you are, if say you are the message

the number of blocks you actually intent to transmit is lesser than that then you have to make

further adjustments here, right so how would you do the adjustment, so you have to look at

this n is number of code words bits you have introduced the additional variable E here, ok

and once you compute the code word you will only transmit up to E, ok the code word here

that you will transmit will stop at E, ok when stops at E you will add r and then for the

remaining r you can either set the large positive value that we spoke about or make the code

change here, so that you will not go till the end of all the columns, the B that you will use will

stop at the particular n be the that you want, ok.

So it will not go through the end of the matrix, it will stop somewhere before, ok so that is the

small change you want to make, I am going to skip making the change in the code here it is a

little bit (may) it is not too difficult but one each to be little bit careful here, so wherever you

use B, you will not go till the end of the column you will stop a little bit before, ok. Hopefully

that is clear to you that is something that you have to do in the rate matching, ok.

(Refer Slide Time: 17:31)

So you disregard the remaining of the parity bits, so I will leave this as an exercise for you, it

is easy enough to try, you have the n B but here you have a different E, ok that will

correspond to a smaller n B, ok everything else you keep the same and you do not transmit

beyond E and you in the decoder you do not use anything beyond the E, ok so that is the

couple of small little changes that one needs to make, ok. So that is the rate matching part, ok.

(Refer Slide Time: 17:57)

The next two things I mention that one needs to do is convert this code into fix point, ok we

will do that it is not very difficult to do.

(Refer Slide Time: 18:01)

And then introduced the offset here, ok so we will do these two things in the next lecture, ok

and with that we will close the LDPC codes chapter.

