LDPC and Polar Codes in 5G Standard
Professor Andrew Thangaraj
Department of Electrical Engineering
Indian Institute of Technology, Madras
Channel Polarization, Definition of (N,K) Polar Code and Encoding

(Refer Slide Time: 00:17)

Polar transform and BPSK-AWGN

L3
Uy | | Ty

u | | L™ 0-5»1

r
14 -\ 4

U | [

BPSK i

Uy | 2 + f1

U | GN | 1!' T

» | AWGN ’

U Nzt grmait Ts

u > T v T

7 l'ﬂ'l'r) 4
u 1’

8 rg

N =[r 1,1y 1y]: received vector

-ﬂm-l\ﬁd;ﬁ

So let’s look at what happens if you use the polar transform along with a channel ok. So here is
an example I have shown 8 bits here, 8 could be any n I have used n equals 8 for illustration but
it could be any other n ok. So you have 8 bits coming in you use the polar transform which is 8
you get 8 outputs ok so this outputs can be anything and usually you can denote it as x1, x2, x3
x4, x5, x6, x7, x8 so this are 8 bits and the you can transmit them through BPSK-AWGN, what is
BPSK? Once again 0 goes to plus 1, 1 goes to minus 1 and what is AWGN? It is S plus noise

right, so noise is normal with mean zero and variance sigma square, some sigma square.

So you create this noise you get received values ok so this is how a polar transform could
potentially be used in the BPSK-AWGN channel, AWGN channel and then this r N is the
received vector this is just notation for the received vector ok it is fine we used it, it is just an

invertible transform of why would you use it, what is the point of using a polar transform before

a channel? So turns out if you don’t use the polar transform every bit sort of goes through the

same channel in some way ok so there is nothing much maybe you can do.

The polar transform combine this bits and gives us one some sort of reordering or changes the
channel in some way you can view it in a different way ok. So this notion of looking at
individual bit channels after the polar transform is the key innovation polar codes and it turns out
those channels vary la lot in terms of quality ok so that is the next picture. So this picture is easy
enough there is nothing much going on you have so many bits coming in you do the polar
transform you can do it for any n I have shown it for any n equal 8 you can do it for n equals
1024 also, 1024 bits coming in you hit it with a polar transform you get outputs, do the BPSK-
AWGN you get received bit ok. Now what is the effect that this has? How do you view this in a

polarization point of view? Here is the picture.

(Refer Slide Time: 02:29)

. 8 r
Bit channels and polarization S v

“\5 [ai |) »
R Bit channel 1 | r y% x

u "] Ny — ./‘P

d Bit channel 2 | AL

u .] r'ZN]’ Uy, u

& | Bit channel 3 | il e §

u [- [SARTRRTRT)

;' _B|tchannel| . - V2 1

.) B
Un Bit channel N | P Uy, Uy gy Uy
= _ B -

* Bit channels polarize and can be ordered based on “quality”: quality
varies from very good to very bad =

Ok so this picture is the central idea behind polarization. Once again you will not go deep into
the theory of this picture except that they will present that from a high level to understand what is
going on ok. So it turns out after polarization you can sort of decompose or view what has
happened in terms of what is going on to the individual bits in a sequential way ok so you can
convert the n channels that you had into n combined channels that you had in the polarization
after when you did polarization and split them up sort of into individual bit channels and the first

bit channel is defined as follows.

You have ul going in, this is the input to the first bit channel and the output is the entire received
vector r N ok remember once again the entire received vector. This is the first bit channel split bit
channel this is just a definition at this point ok I am defining the first bit channel to have ul as
the input and the entire received vector as the output ok. So I am reordering or viewing the
previous channels so in the previous picture we had this kind of picture I am seeing this in a
different way ok remember I have got all the bits all the received values at the output ok and

remember the first bit would have effected all this bits in some way.

So all the received values will have some information about the first bit ok. So it is not wrong to
view it this way ok. So we will take input as ul and the bit channel I will imagine has a huge
output has all the outputs together the entire received vector collected together that is the output
ok. Now I will define sort of a second bit channel which has input as u2 which is the second bit
but look at the output here pay attention particularly the r N is fine ok so you might say the entire

received vector is there but to this I will add ul as one of the outputs of this bit channels ok.

So now at this point this is not a real output ok, why is that? Because the channel is not giving
me ul ok the channel only gives me r N ok I will imagine that somehow I have this ul ok and we
will see how to create this ul in the actual physical channel it turns out you can create a good
estimate for this ul in some way and cleverly use it and get this effect of channel polarization but
at this point I am defining the second bit channel as input u2 and having output as the entire

received vector and the previous bit ul as one of the outputs ok just a definition.

Next comes the third it channel so here I will go little bit further ok so I have the entire r N as the
output u3 is the input again ok entire r N is the output along with that I will say both ul and u2 I
already have the output ok once again this are not real outputs at this point but mean just carry
along with me, you will see later on how to get some substitutes for this ul, u2 later on. For now
ul, u2 will imagine somebody is giving me at the decoder some benevolent person is giving me

what ul and u2 are and imagining this (second) third bit channel.

So likewise you can proceed, what do I do for the ith bit? For the bit channel I, I will imagine
that the entire received vector is there that s not very hard to imagine I have the entire received
vector then I will also imagine I have the all the previous bits that were transmitted so ul tou I

minus 1 I already have at the output this will be what I will imagine ok so likewise I will go all

the way upto the nth bit channel which has all the received values that is ok and then all the
previous bits ok. So now what special about this split channel? What is special about this bit
channels is? This bit channels are not similar at all ok, they are very-very-very different from

each other over (())(06:26) picture they are all very different in quality.

In the previous case all the channels here all the channels where which you received rl are the
same. Here this n channels will have very different behavior ok. So you can imagine why, right
so first of all this channels are very different from the previous channels ok they have one bit
input but the outputs are huge ok and also you are assuming the previous bits are available so
they can be very different in quality and that is true ok so it turns out you can study this bit
channels very carefully and you can sort of order them based on quality ok and the quality you

can show where is a lot from very good to very bad.

Ok and it turns out as you increase N they either become very-very-very good or very-very-very
bad there are literally no channels which are sort of mediocre neither very good nor very bad ok
nothing in the middle no middle path all bit channels either become very-very good or very-very
bad so this is the essence of polarization. What does polarization mean? Go either go to the north

pole or the south pole right polarization (polar) one of two things nothing in the middle ok.

So that way this bit channels get polarized ok they either became very-very-very good or very-

very-very bad ok, so this are called this is called polarization.

There is a wonderful information theoretic proof for this polarization for what type of channels it
happens and all that and once again we will now study that at least in this course will be later on
will add some additional content for this but for now we will just look at how to use this
polarization to define polar codes and how to do use this polarization to design decode as for
polar codes ok and achieve good performance that will be the focus of the lectures in this course
but this idea is very central but keep note of this not having the real output and what do you do

for that, we will postponed this discussion when you come to the decoder.

So now we will use this idea of polarization and start talking about how to define polar codes ok

you come to this motion of how to recreate this ul at the output side later on ok.

(Refer Slide Time: 08:37)

Reliability sequence: worst to best (5G)
Ty . =
e*)”.;*“‘péqwa'
IN:8
*1 2 35 46 7 8
3
*N=16
'1235@4610?11133121&151&
*N=32
*1 2 35917 4 610 718 11 19 13 21 25 8
12 20 14 15 22 27 26 23 29 16 24 28 30 31 32

» Specified for N = 1024 in the 5G standard
+ Sequence for smaller N derived from the sequence for N = 1024

Ok so now the next important idea is that of a reliability sequence ok so I mentioned how after
polarization if you take the bits you polarize them and transmit them one after the other end over
the BPSK-AWGN channel there is a lot of polarization ok. Some bits become some bit channels

and then you can define this clever bit channels which have previous inputs.

If you do that then some channels become very-very good some channels become very-very bad.
Now which channels are good which channels are bad? Ok that is given by the reliability
sequence this tells you the ordering of channels, ordering of bit channels from worst to best ok.
Which is the worst among this N bit channels!? And which is the best among this first bit
channels? I am giving you the reliability sequence as per the 5G standard ok. Now there are
multiple ways to create this reliability sequence and a lots of research going on and how
accurately you can find the reliability sequence, how realistic it is etc-etc-etc all of that we are

not going to go into detail but we will simply provide the final answer ok.

So it turns out for N equals 8 according to the 5G standard where reliability sequence is this ok.
One the bit channel 1 is the worst channel, next comes 2 ok after that is 3, after that is 5, after
that is 4 then 6, 7, 8 ok. So it is not the same order as 1, 2, 3, 4, 5 so you see this two got
switched for N equals 8 ok. So the 4™ bit channel is better and the 5" bit channel according to
this reliability sequence ok. So like I said the way in which you do this is not very precise it is

sort of noise and simulations and all that.

Maybe I will point you to some other references and if you are interested in reading about how to
find this reliability sequence? But in this lecture we won’t focus on how to find this reliability
sequence? We will just think about how to use them for designing for encoding and decoding
polar codes ok. So here is the reliability sequence for where n equals 16 so you see this 1, 2, 3, 5
comes again and then suddenly 9 comes ok, 9 becomes bad channel then you have 4, 6, 10 this is

the sequence ok. So for instance 14™ channel, 14™ bit channel is better than the 12" bit channel.

The 8" bit channel is worst than the 12" bit channel like that, that is how you read it, this is the
sequence in which the quality of the channel is (())(11:02) 16 bit channels they are ordered like
this. This is for N equals 32, remember all this numbers like I said I am pulling from the 5G
standard, the 5G standards specifies this for N equals 1 0 2 4 ok and sequence for smaller n is

derived from the sequence for m0, m equals 1024 ok.

So I am just picking it up from there ok so you can also do this if you have access to the 5G
standard you can go pick up their reliability sequence for 1024 and then from that find the
subsequences which are 5n equals 8, 16, 32 and all that ok so that is the final summary. Once you
do the polar transform and transmit on the BPSK-AWGN channel for instance or any other
channel for that matter you can take a global so the reliability sequence the bit and then create
this bit channels. The bit channels become polarized and they can be ordered from the worst to

the best and the sequencing a sort of given here.

Ok you can take one sequence, how do I find the sequencing? When I am going into details that
but the final answer is given to you ok so this is the sequencing alright, so this is the notion of

reliability sequence it is very crucial for designing and defining polar codes very important ok.

(Refer Slide Time: 12:15)

Reliability sequence: N = 1024

1235917334665107 18111912913 34 6621 25735 2537 813067 513 1241 69 13120 14 49 15 73 258 12133 36 259 27 514 8138 26 23
137 261 265 30 515 97 68 42 145 29 7043517 50 75 273 161 521 289 529 193 54571 45 132 8251 74 16321 134 53 24 135385 77 138 8357 28 08
40 260 85 139 146 262 30 44 99 516 89 141 31 147 72 263 266 162 577 46 101 641 52 149 47 76 267 274 518 105 163 54 194 153 78 165 769 269
27551955 84 58522 113 136 79 290 195 86 277 523 50 169 180 10087 61 281 %0 291 530 525 197 142 107 148 177 143 531 322 31 20191 546 293
323533 264 150 103 106 305 297 164 93 48 268 386 547 325 209 387 151 154 166 107 56 329 537 578 549 114 155 80 270 109 579 225 167 520 553
196 271 642 524 276 581 292 60 170 561 115 278 157 88 198 117 171 62 532 526 643 282 279 527 178 294 389 92 545 770 199 173 121 202 337 63
283 144 104 179 255 94 645 203 593 324 353 758 771 108 181 152 210 285 649 95 205 259 401 609 353 326 534 156 211 306 548 301 110185 535
538 116 168 226 327 307 773 158 657 330 111 118 213 172 777 331 227 550 539 388 309 217 417 272 280 159 334 551 673 119 333 580 541 390
174 122 554 200 745 180 226 339 313 705 391 175 555 582 44 284 123 449 354 562 204 64 341 355 528 543 557 182 296 286 233 125 206 183 644
563 287 506,300 355 212 407 186 397 345 537 646 504 536 241 207 96 328 565 801 403 357 308 307 418 214 569833 589 187 647 405 728 897 505
419 303 650772 361 540 112 332 215 310 189450 218 409 610 597 552 651 230 160 421 311542 774 611 658 134 10 601 340 219 369 653 231
357 314 451 543 335 234 556 775 176 124 655,613 342 778 221 115 425 356 674 584 356 208 184 215 136 558 661 617 343 317 242 779 564 M
453 398 404 208 675 550 THG 433 358 188 237 565 615 58 781 706 127 243 566 390 47457 359 406 304 570 245 596 190 567 677 362 707 590
216 747 648 342 420 407 465 681 80D 363 591 410571 789 598 573 220 312 709 509 602 652 422 793 803 612 603 411 232 689 654 249370 191
365 655 660 336 481 316 227 371 614 423 426,452 615 544 236,413 344 373 776 318 223 427454 238 560 834 805 713 835 662 509 7RO 618605
434 711 817837 348 898 244 663 435 319 676,619 899 782 377 420 666 737 568 A1 626 239 360 458 400 78S 552 679 435 678 350 246430 667
621364 128192 783 408 437 627 572 466 632 247 708 351 600 663 791 461 250 683 574 412 804 790 710 366 441 629 690 375 424 467 794 251
372482 575 414 604 367 465 656 901 06 616 685 711 430 795 253 174 606 BAY 691 714 613 483 BOT 428 905 415 224 B4 693 836 620473456
797 B10715722 B3R 717 B65 811 607 913 723 697 378 436 818 320 627 813 485 431 B30 668 489 240 379 460 623 628 438 3R] R19 462 497 670
680 725842 630 352 468 430 738 252 463 443 447 470 248 684 B43 739 900 671 TR4 &S0 821 729 929 792 568 902 631 GBG 845 634 712 254 692
825903 647 741 B51 376 445 471 484 416 436 906 796 474 635 745 853 961 856 634 798907 716 B0 475 637 695 255 718 576 914 799 812 380
638 437 608 400 BET 724 457 909 719 814 477 857 840 726 699 915 753 869 620 £15 440930491 624 672 740917 464 B44 382 498 931 822 727
562 873493632 730 701 442 747 846 971 183 B3 852 731 499 B8] 741 446 477 636 933 643 904 R26 501 847 746 827 713 447 963 917 476854
858 635 508 488 656 747 820 754 855 558 505 B0 256 965 910 720 475 916 639 740 945 870492 700 755 859 479 969 384 911 816977 871918
7H8 494 874 702 032 757 B61 500 732 B34 923 875919 503 934 744 761 8A2 495 703 922 502 877 B4B 503 448 734 B28 935 BA1 938 964 748 506
856525 735 830 966 939 B85 S07 750 946 567 756 860 541 831 912 872 640 B89 480 947 751 970 509 862 758 971 930 876 863 759949 578 534
973 762 878953 456 704 536 979 884 763 504 526 879 736 994 86 940 955 951 927 765 942 968 BS7 §37 948 508 B9 585 752 943997 977 £91
510950974 1001 593 951 864 760 1009 511 980 ¥54 764 975 955 B30 Y82 983 928 996 766 957 858 956 Y38 987 944 §92 999 767 512 989 1007 952
1003 854 976 B35 1010 956 1005 1011 958 984 959 528 1013 1000 1017 768 590 1004 591 1006 560 1012 1014 856 1007 1015 1018 1015 952 1021
1008 1016 1020 1022 10323 1024

So here is the full reliability sequence for N equals 1024 1 will not expecting you to learn this by
heart you don’t have to do this you don’t need to mug up this sequence but this is the sequence. It
is given in the standard and you can see how it goes there is no pattern here right. So it is sort of
random in some sense but not all that random sort of increases from 1 to 1024 in some generic
way but suddenly you will have some big numbers showing up in early on right so it sort of
difficult to predict there is no real pattern here as far as at least I know there is no pattern here it
is hard to come up with this estimates and also you may if you read more will see if the noise
variance changes in the AWGN channel this reliability sequence actually changes. Ok so it
actually changes so it is hard to pick up one reliability sequence for a wide range of noise
variances but people use some close simulation studies and carefully study it and come up with

something like this.

Ok so the reliability sequence is a difficult thing to find ok so not very easy to find. There are
good methods available today in the literature but like I said even if you find it strictly it will
vary from noise variance to noise variance and it is not sort of contain so many cases it is not
contained some cases it is contain, so you can use some approximations and that is the structure
but it is a very hotly research topic to, so reliability sequence is important but for us, we are not
going to focus too much on the difficulties around reliability sequence. We will simply take the
one that is given in the standard and be happy about it ok so if you are doing that there is no

problem.

(Refer Slide Time: 13:56)

(I_V_,_E) Polar Code

* Message: m of length K bits Gaot Tyt &

* Form a vector u of length N bits as follows
+ Find N - K least reliable {worst) channels from reliability sequence

+ Set u, for those N - K channels to zero (called frozen positions)

o m r?maining K bits of u (called message positions) b feas® ek
= —_— N
» Codeword: u G, ")
.\ Ll
— '» W -’-[e g 3
Y“\'F re . . '\%"M

¥
i

Ok so having done all this work I will study the polarization having studied this bit channels
having understood what the definition or this reliability sequence is we are ready to define the
polar code ok. So N K polar code is defined for N equals 2 power n ok and the small n could be
when usually you want to start at 4 (sorry) 2 at least 2-3 so on ok. The message m of length k bits
and this k is going to be a less than or equal to n ok. Message m is of length k bits that is ok what
do you do to define the polar code I will define the encoder for polar code, ok this is the encoder

for the N K polar code.

I will form a vector u of length n bits ok, how do I form that? I will first find the n minus k least
reliable or worst channels from the reliability sequence ok there is a reliability sequence. What is
the first n minus k least reliable, the first n minus k numbers in the sequence is the least reliable
right so you take the n minus k least reliable and I will set the u 1 for this N minus K channel to
zero ok so I am saying channels here remember this are like N minus K positions ok. The first N
minus K least reliable positions as per the least reliability sequence use set those u i to be equal
to 0, remember u 1 has length n ok the first N minus K positions whatever they are you set them
to 0 ok, the u i corresponding to the first N minus K positions in the reliability sequence

remember it is not in the same order, the order sometimes changes.

You set those to zero now there will be K remaining positions for u ok, the K remaining positions

you set them to be equal to the message ok alright so you have this vector u ok it has n positions

1, 2, so on till n ok the N minus K least reliable positions you put 0 ok so you put 0 here, you put
0 here wherever they are least reliable you put 0 ok and then the remaining guys you put message
K most reliable so least and most with respect to the reliability sequence ok, so there you put m

messages, messages go there.

Ok so you form a vector u like this and then what is the code word? Code word is simply the
polar transform of u ok u times G N polar transform of u is it ok, that is the definition for the N K
polar code for nay n you can do this once you have reliability sequence you have a polar code
right so as simple as that right. So hopefully this is clear we started with a 2 by 2 polar panel we
created G N polar panel then we looked up that polarization property and then we define the
reliability sequence. Once you define the reliability sequence you have a polar code ok, so that is

it.

(Refer Slide Time: 17:26)

Polar code example: (8,4) *% ™ A

e
* Reliability smum:e:@ 4 6 7 8 I
* Frozen: 1235 P T e e

—_— - &,
'Messagedﬁ?s ¢ o um +uld, ylo,) ey Y

a.;‘

J\r‘?‘] R i “']
um w /

u|z>f)/wlz\12 utzJL"ZY\N ")

r § F \ Lo\
A A WA
POROR OO
0 0 0 m 0 m my m b=t

Here are a few examples I am starting with N equals 8 small n equals 3 ok and defining the 8, 4
polar code this is the reliability sequence so the frozen positions the once for which you choose
them to be zero this are called the frozen positions ok so once again I think I missed defining that
the least reliable N minus K least reliable channels which you set to zero are called the frozen
positions and then the remaining are message positions ok. So if you do 8, 4 code reliability

sequence is 1 23 54 6 7 8 so the frozen positions are 1 2 3 5 ok, the message is 4 6 7 8 ok.

So how do you visualize the polar code construction? You can go back to the binary tree
representation of the polar transform ok and 1 2 3 and 5 you set as 0, so this is all frozen ok I will
write f here to indicate that this are frozen and then write m here to indicate this are message ok.
So the first, second, third and fifth leaf nodes are frozen to 0, the remaining are set to m1, m2,
m3, m4. Now will this encoding happen? You will do 0 here, 0 here and you will get a 0, 0 here

right 0 0 goes to 0 0 you get 0 here m1 here and you will get m1 (m1) here right.

So 0 is coming here m1 is coming here so 0 plus m1 is m1 then m1 itself is retain here likewise
you have 0, m2 so this will be m2 m2 ok this is m3, m4 so will have m3 plus m4, (m4) ok then
what will, happen in the next step? This will this is 0 0 m1 ml so this 4 bit vector will be m1,
ml, ml, ml this will be m2 plus m3 plus m4, m2 plus m4, m3 plus m4 and then m4 right so that
is what happens at this node you combine m2 m2 and m3 plus m4 m4 you take the ex-or of this
two keep it here and then this is retained as it is ok so remember this is retain as it is. The ex-or

of this two goes here.

Ok that is what happen in this and then finally the code word 8 bit code word is going to be again
ex-or of this two and then this retained as it is right so let me write it down laboriously for you
ml plus m2 plus m3 plus m4, m1 plus m2 plus m4, ml plus m3 plus m4, m1 plus m4 and the
remaining 4 are the exact same things as this m2 plus m3 plus m4, m2 plus m4, m3 plus m4, m4
this is the encoded version so this is the input to the transform and this is the output of the

transform and that is the code word so this is the code word ok.

So you have a message m which is ml m2 m 3 m4, m is m1l, m2, m3, m4 and the code word is

this ok remember plus again as ex-or or modulo 2 addition you do all this things ok.

So if you want you can create or generate a matrix out of this you will get when this easily
specifies the generator matrix ok. You can construct that if you like ok you will get a 4 by 8
generator matrix and you notice this is not a systematic encoding, isn’t it? m1, m2, m3, m4 does
not appear by itself in the code word it is not systematic but this is the encoding that you have
ok. So once you fix length and the number of message bits and once you have reliability
sequence you can always do polar encoding and this tree representation gives a very simple way

in which you can implement the encoding aspect.

(Refer Slide Time: 21:40)

Polar code example: (16,10) and (32,20)

(1610) §«'b
1 2 3 5 9 4y6 10 7 11 13 8 12 14 15 16
s Frozen:l 2 3 5 9 4

“Message:6 10 7 11 13 8 12 14 15 16 @
#

(32,20)

*1 235917 4610 7 18 11 19 13 21 25 812
20 14 15 22 27 26 23 29 16 24 28 30 31 32
+frozen:l 2 3 5 917 4 6 10 7 18 11

* Message:19 13 21 25 812 20 14 15 22 27 26 23 29 16 24 28
30 31 32

©

I am going to give a few more examples here is a 16, 10 example ok so for n equal 16 the
reliability sequence is this and you have to freeze the first 6 positions right, so first 1, 2, 3, 5, 9
and 4 will get frozen in your tree you have 16 leaf nodes the 1 nodes, 2™ node, 3 node, 5", 4®
and then 9" are going to be set as zero the message will go into the remaining place and then will
start encoding as before you will get the code word at the output ok a code word each bit of the

code word will be some ex-or of some m1, m2, m3 like that.

If you want you can write out and generate a matrix for that and you will have a definition for
16, 10 polar code ok. the same thing happens for 32 ok there is nothing different about it n equals
32 so and 20 is the K so you have to freeze the first 12 positions you go all the way up to 11, so
what are the frozen positions? 1, 2, 3, 4, 5, 6, 7 then you have 9, 10, 11, 17 and 18 ok some sort
of numbers that they get frozen to zero remaining at the message bits once again you can
combine and create a generate a matrix if you like ok. So in fact viewing the freezing as (())

(22:54) times G N is also quite easy ok.

So this is the polar transform you look at the non-frozen positions in U and the rows
corresponding to G N in that, that will give you the generator matrix ok so that is a quick way to

generate come up with a generator matrix for the polar codes ok. So this is example.

(Refer Slide Time: 23:15)

wrt
Binary tree representation: (16,10) ™7.¢%

x
A stk

ults =

M)
1

—
ufl ufd,
Py ,
P! — i\,.h
u“"/ l.||4|z u;a}] \}::IZ:
I ™y v
— b
L b
ot /@&\ ul) ,/h‘ ult, /m ul",“/ $\
: (A ?!i_/ 1@ - ’ (__.\r ‘0 M~ M~

-~ o0 A0 000
O00Q00000QODO0O0O0O0OO0 0O
0

0 0 0 0 m m om 0 mom omom m omy My

And here is for 16,10 the full blown binary tree representation I am not going go through and
show you the computation but this is what happen here frozen bits zero and then the message bits
10 of them and they combine and you create the 16 bit code word. Remember once again this are
all 1 bit here, this are all will be 2 bits right and then you have 4 bits, then you have 8 bits here
ok and then finally you have 16 bit code word ok. So that’s it that is the polar code and even if

you have so you can imagine if you have N equals 1024 and K equals 512 what do you do?

(Refer Slide Time: 24:07)

Reliability sequence: N = 1024

1235917334665107 18111912913 34 6621257350537 813067 513 124169 131 20 1440 1573258 2213336 250 27 51481 38 26 03
137 261 26530 51597 6842 145 29 7043 51750 75 173 161 521 280520 193 545 71 45 1328251 74 16321 134 53 24 13538577 138 8357 1R 98
40 260 85 139 146 262 30 44 99 516 89 141 31 147 72 263 266 162 577 46 101 641 52 149 47 76 267 274 518 105 163 54 194 153 78 165 760 269
27551955 B4 58522 113 136 79 290 195 86 277 523 50 169 140 10087 61 281 %0 291 530 525 197 142 102 148 177 143 531 322 31 20191 546293
323533 264 150 103 106 305 297 164 93 48 268 386 547 325 209 387 151 154 166 107 56 329 537 578 549 114 155 80 270 109 579 225 167 520 553
196 271 542 524 276 581 292 60 170 561 115 278 157 88 198 117 171 62 532 526 543 282 279 527 178 294 385 92 585 770 159 173 121 202 337 63
283 144 104 179 255 94 645 203 593 124 353 258 771 108 181 152 210 285 649 95 205 269 401 609 353 326 534 156 211 306 548 301 110185 535
538 116 168 226 327 307 773 158 657 330 111 118 213 172 777 331 227 550 539 388 309 217417 272 280 159 334 551 673 119 333 580 541 390
174 122 554 200 785 180 226 339 313 705 391 175555 522 364 284 123 449 354 562 204 64 341 355 528 583 557 182 296 286 233 125 06 183 644
563 287 506 300 355 112 407 186 397 345 587 646 504 536 241 207 96 328 565 801 403 357 308 307 418 214 569,833 589 187 647 405 728 897 505
419 303 650 772 361 540 112 332 205 310 189450 218 409 610 597 552 651 230 160 421 311542 774 611 658 134 10 601 340 219 369 653 231
352314451543 335 230 556 775 176 124 655613 342 778 221 115 425 356 674 584 356 288 184 215 126 558 661 617 343 317 242 779 564 ME
453 398 404 208 675 550 T8G 433 358 188 237 665625 588 781 706 127 243 566 399 34T 457 359 406 304 570 245 596 190 567 677 362 707 590
216 787 648 342 420 407 465 681 B0D 363 591 410571 789 598 573 220 312 709 599 602 652 422 793 803 612 603 411 232 689 654 249 370 191
365 655 660 336 481 316 227 371 614 423 426,452 615 544 236,413 344 373 776 318 223 427454 238 560 §34 805 713 B35 662 509 7RO 618605
434 721 817837 348 898 240 663 435 319 676 619899 782 377 420 666 737 568 A1 626 239 360 458 400 783 592 679 435 678 350 246430 667
621364 128192 783 408 437 627 572 466 632 247 708 351 600 663 791 461 250 683 574 412 804 790 710 366 441 629 690 375 424 467 794 251
372482 575 414 G04 367 465 656 901 806 616 685 711 430 795 153 374 606 B49 691 714 613 453 BOT 428 905 415 224 B4 693 836 620473456
797810715722 B3R 717 B65 811 607 913 723 697 378 436 818 320 627 813 485 431 B39 668 489 240 379 460 623 628 438 3R] R19 462 497670
680 725842 630 357 468 439 738 252 463 443 442 470 248 684 843 735 900 671 T84 £50821 729 530 T2 368 90 611 685 845 634 712 154 692
815903 647 741 51 376 445 471 484 416 436 306 796 474 635 745 853 961 856 634 798907 716 BOR 475 637 695 255 718 576 914 799 812 340
698 437 608 400 867 724 487 909 719 814 477 B57 840 726 699 915 753 869 820 815 440930 491 624 672 740 917 464 B44 382 408931 822 717
962 873493632 730 701 442 747 846 921 383 B3 852 711 499 B8] 741 446 477 636 933 642 904 B2G 501 347 746 827 713 447 963 917 476854
58 638 908 488 656 747 829 754 855 B3 505 B00 256 965 910 720 478 916 630 749 243870452 700 755 859 479 969 384 S11 8160977 8715918
TR 434 874 702 932 757 B61 500 732 834 9231 875919 503 934 741 761 882 435 703 222 502 877 B48 393 448 734 A28 935 BRI 912 964 T4B 506

856 525 735 830 966 939 B85 S0T 750 946 567 756 860 541 831 512 872 640 59 480 947 751 970 509 862 758 971 920 876 863 759949 978524
973 762 878953 496 704 936 979 884 763 504526 879 736 994 BAG 940 995 981 577 765942 968 B37 837 948 504 B0 585 751 943997572 891
510950974 1001 593 951 864 760 1009 511 980 934 764 975 955 B30 YB2 983 928 996 766 957 858 956 HI8 087 944 §92 999 767 512 989 1007 952
1003 854 976 B35 1010 956 1005 1011 558 984 959 H28 1013 1000 1017 768 590 1004 591 1006 560 1012 1014 856 1007 1015 1018 1015 992 1021
1008 1016 1020 1022 1033 1024

Ok you go back to the big slide that I showed you ok this is N equals 1024 and K equals 512,
what will you do? You take this big vector and then mark out the first 512 positions and make
them frozen and imagine this tree and on the leaf you freeze all of them set them to zero put the
message bits in the remaining places and then do the encoding ok I mean it is hard to do it by

hand but you can write a quick program and that will work quite fast ok.

So that is the end of description of the polar codes hopefully this was clear to you once again the
important things to focus on at the polar transform is notion of bit channels, how we define them
and the reliability sequence is defined that is very-very crucial and once you have a reliability
sequence you have a polar code ok once you have it for any N it is the polar code ok so N, K
polar code your frozen positions and message positions you freeze the first N minus K and you
put your messages in the remaining K ok, that is the end of this lecture on polar codes. In the
next lecture we will see MATLAB programming for writing a quick encoder once again we will

write a simple encoder that works for doing the polar encoder ok, thank you very much.

