
LDPC & Polar codes in 5G Standard
Prof. Andrew Thangaraj

Department of Electrical Engineering
Indian Institute of Technology Madras

Soft-input Soft-output Iterative Message Passing Decoder for LDPC codes

(Refer Slide Time: 0:17)

Hello and welcome to this lecture on decoding LDPC codes, so far we have seen the

definition of the parity check matrix for LDPC codes in the 5G standard, we saw how to

encode them, we even wrote up small Matlab program for encoding this codes, so all that is

ready now we are ready to jump into decoding okay, so how do we decode, the decoder is the

heart of the success of the LDPC codes like I have mentioned before, it is a message passing

it iterative decoder, it works in multiple rounds of iterations and it actually consist of a

reasonably simple operations and the memory structure is what important, so you have to

store a lot of things in memory and move it around, access it etc. okay, so you will see as we

describe the decoder, what is involved, the principles are interesting and simple.

Now once again we will not to get too much of the theory, we will focus on the

implementation aspects. Some of the things I do will be repetitive in the sense that you will

be reminded a lot of the single parity check decoding because the single parity check is an

important ingredient in the decode for a LDPC codes okay, so let us get started.

(Refer Slide Time: 1:23)

As a quick overview of where we are with respect to LDPC codes, LDPC codes are linear

codes, specified by sparse parity check matrix, most of the entries are zero or very few ones,

it was proposed long back in the 60s, since the 90s this been a revival this codes and now

they are part of many standards, earlier standards 2 and now the 5G standard also has them

for the data communications part okay.

(Refer Slide Time: 1:49)

So what are the main points to note, the decode of LDPC codes is soft-input, soft-output

okay, so you remember the soft input, soft output decoders is spoke to you about you deal

with these believes or log likely would ratios for the received values and for the bits in the

code words and then you improve then using some calculation, it is iterative in the sense that

it does not try to decode the entire code at once okay, so it will use some partial information

from the code and then do some decoding and then pass messages around okay.

So that is a sort of the idea in this, there is an approximation involved which is called the

minsum approximation, we have spoken about it, this is a very very very well studied

decoder today okay, so many papers are there in the literature, we will not look an exhaustive

study of all possible variations, just the one type of decoding which is quite popular in

practice today okay, so we proceed.

(Refer Slide Time: 2:47)

Okay, so the setting is sort of similar to how we will be doing all along, you have BPSK over

AWGN the noise standard deviation is sigma, the code word is C1 to CN okay, so you have

the code word here which is C1 to CN, so each CI, okay so this is a code word and each CI is

a bit okay, 0 over 1 okay this is a bit, this is the received value remember this is CI first it

converted into SI which is BPSK modulation, okay you can see BPSK modulation here, 0

goes to +1, one goes to -1 okay, it gets converted into symbol and then this is the received

value okay, real value okay, so now a lot of you might know if you have some

implementation background, the real values are not really used in it is entirety, in the decoder

you always quantise it to say 5 bits or 6 bits or 7 bits, I will mention that later on but for now

we will keep it as the real value R as far as the description of the decoders is concerned.

Eventually this will all be integers values after suitable scaling and quantisation okay, so that

will happen later on okay, so this is the received value, we talked about this LLR which is the

channel LLR okay, this log of this ratio of probability of CI given the particular bit okay,

particular received value RI alone and that becomes this assuming you know, CI is uniform

okay, then you have this and for BPSK over AWGN you have this very simple formula for

the LLR right, so we saw this before 2 times RI by sigma squared is the channel log

likelihood ratio for the particular received value okay, given RI alone the belief on the bet is 2

RI by sigma squared, so it is proportional to 2 by sigma square and you can see this is

important to know okay, proportional to RI, I am sorry, LI is proportional to RI and the

constant is 2 by sigma squared, so this part is either need estimation or usually can be

ignored, you can just simply said it as 1 in your decoder okay, so we will do that later on.

So what we seek is the output LLR, where here you have the entire received vector okay,

given the entire received vector what can I say about the probability of a particular bit being 0

or 1 okay, now it turns out if you want to exactly write down an expression for this is

possible, but the complexity is really huge, your exponential complexity in KN and N and all

that and particularly if K is thousand, and N is two thousand you have no hope of doing it

okay, so what will happen in this decoder is, we will approximately iteratively compute this

okay, not compute exactly of course, approximate computation but we will iteratively go

towards it, we will slowly improve the log likelihood ratio, using more and more information

from the remaining code words like, so this LI, small LI uses only information from RI, we

will try to use other bits of information slowly in a iterative manner and expand the believe

that you have, make the better belief that you have on a bit better and better okay, so that is

the sort of philosophy, will be little use on describing that going forward okay.

(Refer Slide Time: 6:38)

So let me describe what happens little bit more clearly, so let us focus on the low-density

parity check matrix, so this is the matrix okay, this is only a part of the matrix, the top left if

you will okay, so the first column has three ones okay, so the first column has three ones,

everything else is zero and the ones are in the first row, fifth row and the ninth row okay,

every other row has zero in the first column okay, there is one only in the first row, fifth row

and ninth row okay and if you focus on the first row, the first has once in the fourth column,

eight column, twelve column, of course the first column is also one, fourth , eighth and

twelfth column, likewise the fifth row has once in the second column and tenth column and

twentieth column okay and the ninth row has once in the sixth column, sixteen column and

eighteenth column okay, remember this is all sparse matrix, so you expect a lot of zeros okay,

there will be a lot of zeros, very few ones okay, so these is the one, this is the sort of the local

structure okay.

So this notion of a local structures very important in this, approximate iterative message

passing decoders, if you just focus on the first bit alone and look at the parity check matrix,

this is how everything looks okay, you do not see anything beyond this, of course the first bit

is also affected by other bits, these are not the only bits which affect the first bit, right

because through these bits, it is further connected to other bits, right the twelfth column may

have more ones okay and then that made have more connections okay all of that is there, but

for now we can ignore all of that and just focused on the immediate structure in the first bit

okay.

Now if we are given only R1 okay, we know what the belief of the first bit is, this is like the

first estimate okay, so this is only from channel, okay you are only given R1, what can you

say about the belief of the first bit, 2 R1 by sigma square, so that we know, there is no

problem okay, so what we do now is, we try to exploit the local structure okay, the connection

in row one, row five and row nine okay, now what does row one tell you okay, we saw this

before, every row of the parity check matrix actually defines a single parity check code, it

gives you a parity check constraint that is satisfied by one subset of the bits of the code word,

so row one is telling you that C1, C4, C8 and C12 belong to the single parity check code

okay, so that is something that know okay.

So using just the SPC decoder okay, so the second estimate is formed by the single parity

check decoder, you can compute another estimate for the first bit okay, the log likelihood

ratio for that bit given R4, R8 and R12 okay, so how will I do this, I can do the minsum

approximation or even the exact computation with the log tan hyperbolic function etc, you

can compute the extrinsic estimate from this okay, so this should again be extrinsic okay, so

this is easy enough to do, I am using only the single parity check code defined by the first

row.

The same way row five also defines a single parity check code involving C1, C2, C10 and

C20, so now I can use the same single parity check code again but with R2 and R10 and R20

okay, now I will get another estimate okay, that is again extrinsic, again uses single parity

check decoder, the same structure again but with different received values okay, now you get

another estimate, third estimate okay, now likewise you can also form a fourth estimate okay,

which comes from row line which is C1, C6, C16 and C18.

So the local structure has given you already for estimates okay, the first estimate came from

the channel itself, second estimate came from the first parity check it was not, the bit was

involved in, third estimate from the second parity check, fourth estimate from the third parity

check, so every parity check in the local structure gives you more estimates for that particular

bit and how were those estimates calculated, using the single parity check decoder the soft-in,

soft-out decoder okay and you compute the extrinsic information okay.

So the same thing can be done for the every other bit as well is that okay, so I showed you for

the first bit, now even if you go to the two hundredth bit, the two hundredth bit will have a

local structure, it will have certain ones in the columns which are connected to certain ones

on the rows, you can go and do the same computation okay, except that you should know

which bits the two hundredth bit is connected to, which are the rows, where are the ones,

once you know where the ones are, you can go pull out these received values, send them

through the same SPC decoders, so you just need this single parity check decoder which will

keep doing seesaw calculations for you okay, so that is the trick to this okay, so there is the

essential ingredients in an LDPC codes, so you use the local structure and get more estimates

for a particular bit okay.

Now this is not the whole story okay, so only the local structure, only conveys partial

information right, so you are not still connected to the rest of the code words, rest of the bits

in the code word or the received values, only the first twenty or so received values are being

used here okay and in fact not even twenty, 3, 6, 9, 9 are the received values are being used

here, these codes might be two thousand bits long okay.

So then you to use the other received values as well but you want to do it efficiently, for that

you use message passing okay, so each code will use the local structure and then pass

messages to each other and improve each other in some iterative nice fashion okay, so that is

the essential idea but this mission of how the code works through the local structure row wise

is very important in implementing, now also understanding how the decoder works okay, so

we will see some more concrete examples going forward but this is the setting okay.

(Refer Slide Time: 12:50)

Okay, so how do you calculate this, we have seen before, I am going to go through this really

really fast without spending too much time on it, we saw that if we have two binary random

variables XY, this is the modular 2 addition okay and Z is X+Y then this is true okay, 1-2Z is

1-2X into 1-2Y, this is the same as Xor okay, so if you do not believe me, you can make little

table here X 1-2X, Y 1-2Y, if you look at it, maybe I should write it bit more with some more

space, so if you make a little table here or maybe I can go to the yes.

So if you make a little table here XY Z equals X xor Y is 01, 00 I am sorry, 0001, 1011, you

have 0110, if you look at 1-2X, 1-2Y and 1-2Z do like the BPSK modulation or a speak, you

have 11-1-1, 1-11-1 and you if you look at 1-2Z you get 1-1-11 and which is actually to 1-2X

times 1-2Y okay you can multiply this two and you get this okay, so this is sort of after BPSK

the xor becomes multiplication okay, in terms of +1-1, it is a multiplication.

Okay, so that is what is being used here 1-2Z is 1-2X into 1-2Y, now you can take

expectations okay, you can take expectations these binary random variables will assume are

independent or at least uncorrelated for this proposed, so if you take expectation, expected

value of binary random variable being equal to 1 is the same as probability that is equal to 1

okay, so that is another little quick, little result that one can derive.

So remember if X is 0 or 1, this is P of 0, P of 1, expected value of X is 0 times P of 0 +1

times P of 1 and that just P of 1, so for binary random variable expected value is equal to the

probability, it takes the value 1.

So if you take the expectations it just becomes this product okay, now you can do this little

bit of work here and defined this LX to be logged PX of 0 by PX of 1 okay and likewise for

LY and LZ also and you can show that this is true, so this is a result I showed earlier on with

a tan hyperbolic okay, this is the crucial result, the tan hyperbolic of LZ by 2 is tan hyperbolic

of LX by 2 times tan hyperbolic of LY by 2 and then you use the fact that is an odd function

and separated into sign and absolute value and when you extend Z to X1+X2+ X3+XW the

same thing applies okay the sign multiply for LZ, absolute value works through this function

F okay.

So we have seen all this before I am just doing a quick recap to tell you why the SPC, SISO

decoder is easy to compute, that is the main thing here okay, so one can do a good

implementation of this, there are which possible to do it in hard where quite efficiently.

(Refer Slide Time: 16:45)

Okay, so nevertheless people tend to approximate this, so there is an, there is a useful reason

why you want to approximate it, it is good to have further lesser computations and if it is

good enough, if it is close enough to actual the exact completion why do all that, so most

people do this minsum approximation you called it minimum approximation, so let us just

say minsum approximation with just the best thing to do here, so we saw this before so the

absolute value is dominated by the minimum of these values okay, so let us say if the

computation of non-linear function, now this really almost no loss in practice, so usually one

can do a little offset as well okay, so this is also something you seen before and we will use it

in the decoder.

(Refer Slide Time: 17:30)

Okay, so like I said this is the, this is actually the tanner graph corresponding to the parity

check matrix we saw before okay, in earlier slide okay, so let me show you that earlier slide, a

real quick okay, so this is the parity check matrix you have row 1 connected to column 1,

column 4, column 8 and column 12 okay, so if you go back to the tanner graph you have bit

node 1 connected to check node 1, check node 5 and check node 8 okay.

So this computation, the local structure computation is very very conveniently captured in the

tanner graph okay and what does the tanner graph further capture? It further captures the

message passing through which these bits exchange the local structure information without

leading to any problems; it captures all of that very very nicely.

Okay, so if you look at the first iteration okay, where you obtain this estimates okay, this LI is

passed from bit node I to check node for all the bits okay, so instead of just talking about the

first bit I can now talk about all the bit nodes, now all the bit nodes will be passing the LLR

to all the check nodes that they are connected to and all the check nodes will do the SPDC

code completion okay, so the check nodes will do SPC, SISO computation okay.

So in the first integration you are going to imagine there channel received value comes into

the bit nodes, you do the LLR, channel LLR calculation 2 buy sigma square RA and then that

LLR gets passed to all the check nodes on the tanner graph okay, so the tanner graph nicely

captures this passing of messages and then what does the check node do? Check node does

single parity check SISO computation okay and then it passes back the extrinsic on each of

the at just back to the bit nodes okay, so that is how you get this L11, L15, L19 okay,

(Refer Slide Time: 19:42)

So how does, how exactly does this happen, so let us look at it very very closely here okay, so

let me show how that happens very very slowly, so you have a the check node 1 which is

connected to bit node 1, bit node 4, bit node 8 and bit node 12 okay, so the message or the

LLR comes from bit node 1, I will denote as M11, bit node 4 is M41, bit node 8 is M81, bit

node 12 is M12 1, these are the four LLR that are coming in okay, now this check node 1

does like I said SPC, SISO okay, it does calculation, it uses the four guides and computes L11

okay and so now you have to just repeat the computation throughout, now this will also send

an L4 okay in this and act to this in L8 and L12 also okay, so it will send back information to

all the bit nodes it is connected to.

So now L11 will involve, will use M4 1, M8 1 and M12 1, on L12 on the other hand will use

M11, M41 and M81 okay, so this is what is critical in the message passing and now it can be

very nicely succinctly captured okay, so L11 uses M41, M81 and M12 1 to compute the

extrinsical LLR for bit 1, what is L12 on the other hand, it uses M11, M41 and M81 and

computes the extrinsical information for bit 12 okay, so likewise in one go you can do all the

computation okay.

(Refer Slide Time: 21:29)

So now that you have done the check node SISO computation, how do you do the next

iteration? How do you keep moving to the next iteration? What you do in the next iteration is

very very interesting okay, so you have on the bit node you have what comes from the

channel okay, L1 is what comes from the channel right okay and then in the first iteration you

have L11 coming from this check node, L15 coming from this check node, fifth check node,

L19 coming from this check node okay, so what you have here is a repetition code okay, the

same code is sort of repeated forth time, the same bit I am sorry, the same bit is repeated four

times, it came through the channel and you got one LLR L1, it seems to be coming through

the check node 1 okay and you have LLR for it L11 likewise you, it is coming through from

check node 5 it has an LLR L15 and the same bit it is coming through this sort of this check

node 9 with the belief L19 okay, you are getting four different beliefs, they are all for the

same bit okay, so you actually have a repetition code.

So what you need to implement here is a SISO for a repetition code okay, so that the very

neat way in which the simple SISO decoders for the repetition code and the SPC code sort of

work to get it, so how do you compute M11, M11 is L1+L15+L19, remember the repetition

code you just add the LLRs, how do you compute M15 and M19 in this direction, it is given

here M15 is a L1+L11+L19, the other 2 guys add up okay.

So these are all remember you have to send only extrinsic, this is an important rule in

message passing, you cannot send total beliefs, if you send total beliefs things will go wrong,

there will be too much dependency in these LLRs and you will not be doing correct

operations okay, so you have to only send extrinsic information.

So if you get something, so if you get L11 from this check node 1, you do not send anything

with L11 back to that guy okay you only send L1+L15+L19 back to that guy okay, so that is

what happens here, it is a very neat way in which iterations proceed okay.

(Refer Slide Time: 23:48)

So once again if you want to summarise okay, there is a row iteration okay where all the

LLRs are processed in every row okay, this is the same as the check node computation

happens here, so likewise this column iteration which is a bit node computation okay, so this

is a SPC, SISO, this is a repetition SISO okay, both of them with some approximations can be

made to involve only just linear operations, either additions or minimum or something like

that which is a linear in the sense, no major non-linear function going on, it is a very easy

thing to implement okay.

So now what you did in one iteration, you can keep repeating again and again and again okay

and when you repeat again and again and again it turns out if you imagine little bit, for every

bit you are using information from all other received values okay, so this message passing

method okay just by using a SISO decoder for SPC codes and for repetition codes one can

keep iterating and repeating and repeating and improve the believes okay.

So what we are going to see next is a couple of simple examples where this is illustrated

okay, one example where you will see the parity check matrix, you will see the received

vector and you will see how it goes through the iterations and how the believes change and

how they improve okay, so this will give us a focus on an implementation and will help us

write Matlab programs for these decoders okay, so that will be the next lecture.

