
LDPC and Polar codes in 5G Standard
Professor Andrew Thangaraj

Department of Electrical Engineering
Indian Institute of Technology Madras

Log-Likelihood Ratio and Soft Input and Soft Output (SISO) Decoder for the Reception
Code

Hello and welcome to this lecture on LDPC codes okay so from this week onwards we will

start looking at low density parity check codes in particular how the low-density parity check

codes are specified in the 5G standard, we will only use those codes and then also how to

decode them. We will build up the decode slowly and the decoder for the LDPC codes has 2

important ingredients, the overall decoder is made up of 2 smaller decoders used repeatedly

and combined in an interesting way, so the basic decoders that are used in the LDPC decoder

is the decoder for a single parity check code and the decoder for the repetition code, okay.

So we have seen the repetition code in some detail, we have not talked about the single parity

check code that much, I will talk about it in this 1st lecture and in particular there is a way to

decode both these codes which are both simple and at the same time little bit different from

what we have seen so far, so this lecture mainly I am going to focus on these 2 codes the

repetition code and the single parity check code and how to build this simple decoder of both

of them, okay.

(Refer Slide Time: 1:47)

So let me start with the repetition code okay so particular I will take the 3, 1 repetition code

and we will look at it with BPSK modulation over AWGN as we have been doing so far and I

will talk about slightly different decoder, it is sort of similar to them ML decoder it does not

do very different from that but we will think about it a bit differently, that is all, okay. So let

us get started, so how does this work once again you have a message bit m okay it goes

through the encoder, produce a code word which is m, m, m okay.

So this is 3 bits, then you do BPSK we all know what it is by now 0 to plus 1, 1 to minus 1

and you get a symbol vector S okay and then this goes through noise and get a receive vector

r which is r1, r2, r3 okay and the decoder has the task of producing m hat or c hat okay so

what we will consider in this lecture is a soft in soft out decoder okay so this is the 1st

modification in our decoder, so what do I mean by soft in? We already saw soft decoders

before which taken the real value r1, r2, r3 and then produce the output but their output was

only m hat right, so traditionally we have been thinking of the decoder as putting out m hat

this is a hard output okay, so it tells you what the estimated bit was okay.

So we will not be interested in m hat in this soft output decoder we will be interested in some

sort of probability as the output okay probability or belief or there are various words that

people use for a soft output not only do I want to say what the bit is but I also want to say

how much do I believe in that value for that bit okay so that is the idea behind this decoder.

So this is hard output we will not be considering that in this. What we will want her is a soft

output, so what I will put out here is l1, l2, l3 okay there are 3 real values that will come out

of this decoder okay. What are each of these values Li is let us say believe I will put this in

quotes here I will define it a bit more precisely later on, belief that bit Ci is let us say 0 okay.

So I want some soft output some real values to come out okay and that is this definition of Li

and I want to say that for each of the rates l1, l2, l3 what is my belief that the 1st bit is 0, what

is the belief 2nd bit is 0, what is the belief that the 3rd bit is 0. So actually for the repetition

code it will turn out that all the 3 values at the same, so eventually you will get the same

value for all 3 and it does make sense but you will see there are some subtleties in this okay.

So let me motivate this with some examples so it is always good to look at examples, so

examples I will focus on the decoder so let us say your R was… Let me take a simple little

example here 3, 2 I will take it as a real numbers just to look at little bit more 2.4, 4.3 okay.

So I get 3 values all 3 are positive and all 3 are fairly large okay, so if you look at it for a

while it is clear what these values are, so once again remember what is the line here? So we

have this transmission which is either plus 1 or minus 1 and noise gets added and what I am

receiving here is 3.1, 2.4, 4.3 are all way out here, right? So these are the 3 receive values

okay so now what is this 3.1 represent okay, so the fact that it is 3.1 means I have a certain

soft input about what that 1st bit could have been okay I have transmitted the 1st symbol which

could have been plus 1 or minus 1 and I received the 3.1 okay so let us say it is here 3.1 okay,

so if you look at 3.1 and if you receive 3.1 it is very likely that the transmitted symbol was

plus 1, so you belief that the transmitted symbol was plus 1 is very high, okay.

Same thing with 2.4, so you got 2.4 is somewhere here you really believe that the transmitted

symbol is plus 1 and you also have 4.3 and that is way out here and that is also very strong

indicator that the transmitted symbol was plus 1 okay so your quite confident about that. On

the other hand let us look at another possibility here may be r is 0.01 right, minus 2.2 and

then may be minus 0.5 okay, so this is another case here and let me draw that same line once

again here and you will see what is going on here is slightly different, so you have plus 1

minus 1. You have got something really close to 0, so this is 0.01 so this is really close to 0

then you got something far away and then something intermediate okay, so now if you look at

0.01 okay it is really I mean of course if you do a hard threshold you going to say the

transmitted symbol was plus 1 okay.

The hard threshold will go towards this, this is strictly closer okay but my confidence in

saying that the transmitted symbol was plus 1 is not very high just looking at 0.01 it is not

very high okay. So I not know whether it was plus 1 or minus 1 because it is just 0.01 of okay

so in that sense 0.01 also represents a belief about 1st bit based on r1 alone right? Okay you

have received r1 that is 0.01 so if I am not given any other information that is the best believe

I have okay. On the other hand if you think about it very carefully the same bit was

transmitted 3 times, right?

The same bit was transmitted once again and I got minus 2.2 which means if I have received

it here my belief is quite strong about what the transmitted symbol could have been it has to

go to this bit, so this is a strong belief okay. Really it could not have been plus 1 it would not

have had such a huge noise, the noise is most likely to have been minus 1 okay the

probability is worth that remember the Gaussian exponentially so as you go further away the

probability is really dropped significantly, so minus 2.2 is a very strong indicator that it is

minus 1 and remember from my code I know that I transmitted the same bit once again okay.

So to find a belief about the 1st bit not only should I use r1 I should also use r2 and even r3

okay so now r3 you might say minus 0.5 was not as strong as minus 2.2 is a little bit weaker

than minus 2.2, it says it is minus 1 it is much better than 0.01 but still it could have been plus

one also I mean it is not so far away from plus 1 but nevertheless it is still a stronger belief

than 0.01, so when you want to decide about the 1st bit you want to take into account r1 also

what r2 and r3 tell you about the 1st bit particularly because the same bit was transmitted

again and again and again this is a repetition code, if the bit was 0 you transmitted plus 1,

plus 1, plus 1, if the bit was 1 few transmitted minus 1, minus 1, minus 1 and all 3 were

received for that okay, so you want to use r1 as well as r2 and r3 to compute the belief for the

1st bit okay.

(Refer Slide Time: 10:52)

So in other words if you just look at these examples it is clear that you compute l1 r1, r2 and

r3 okay r1 tells you directly what it is for the 1st bit but then the 2nd bit and 3rd bit are also the

same so you need to figure out how to combine r1 and r2 and r3 to tell you about l1 okay, so

now how to do this combination? There is a lot of intuition that one could use and may be

directly decide. It turns out… I was given the answer 1st and then I will tell you how to derive

this, so it turns out the correct way to compute this is l1 equals r1 plus r2 plus r3 maybe I will

put… You might want to scale it with something okay multiply by some factor okay so

theoretically putting that factor there is good but in practice people just ignore this factor

okay.

So ignored in this so you can just say r1 plus r2 plus r3 you cannot lose much by that factor it

is a positive factor okay, so you do not lose much by ignoring that factor, okay. So this is the

answer and this is the actual competition that you have to do to find out the total belief about

the 1st bit based on r1 and r2 and r3 all 3 of them are being used, so if you look at it, it has 2

components one case what is called intrinsic, these 2 what are called extrinsic okay, so once

again like a said we will completely ignore this factor, we will not use this at all will only use

r1 plus r2 plus r3 okay and even that there are 2 components one is the intrinsic belief that

you have based on what you received for that symbol r1 directly and then extrinsic what

comes from r2 and r3 and why do I have to add these 3 one can do a small probabilistic

derivation here I am going to do it very quickly but the moral of the story is you can see

intrinsically you can see intuitively why this is r1 plus r2 plus r3, right? So the same bit was

transmitted 3 times so you are allowed to add the 3 received values to get the total belief for

every bit.

In fact this same for l2 also and l3 is also the same okay except that the intrinsic and extrinsic

will differ, right? So if you look at l2 you have r1 plus r2 plus r3 okay, so this is the intrinsic

part these 2 the extrinsic part okay likewise for l3 r3 will be the intrinsic part r1 plus r2 will

be the extrinsic part, so what does intrinsic and what extrinsic changes in l2 and l3 but the

overall expression is the same r1 plus r2 plus r3 okay, so this is an example of a soft in soft

out decoder for the repetition code okay, so the soft in soft out decoder puts out 3 real values

okay intrinsic plus extrinsic, this intrinsic extrinsic division is quite important okay, so the

intrinsic one is what you receive from the Channel corresponding to that particular symbol

extrinsic is what you gain or clean out of the other received values about this particle symbol.

(Refer Slide Time: 14:35)

So I am going to do a quick derivation here to show you how this comes from the main idea

is this notion of a log likelihood ratio okay, so once again I want to briefly comment if you go

back and look at the decoder those of you who have implemented and the ML decoder for

repetition code and we have seen it we will quickly recognize this r1 plus r2 plus r3 also

showed in the ML decoder and this is exactly like the ML decoder okay so what is it that we

are doing which is different okay so what is different about the soft output like this point it is

not very apparent for this code is not very obvious it seems like an unnecessary thing we are

doing putting out soft output okay but when we combine this as part of the LDPC decoder

you will see where this intuition for addition will come from.

So I will play on this little bit later on as well but for now let us see a quick definition

involving log likelihood ratio and all that, so once again so this is how log likelihood ratio is

defined, so supposing I want to ask this question so the probability that c1 equals 0 given r1

okay so remember once again what is the setting here? The setting is this c1, C2, C3, right? C

is c1, C2, C3 the same 3 bits transmitted again and again. Now I want to look at r1 and ask

the question what is the probability that c1 was 0 given r1 okay, so for this you can do this

little competition using base rule you will see that this will be the PDF of r1 given c1 is 0

times the probability that c1 is 0 divided by the PDF of r1 okay the density of the received

value evaluated at r1, so this is easy enough to write.

Now this is the prior probability and it is equal to half okay why is that c1 is the message

itself it could be 0 or 1 with uniform probability okay. Now one can also… So this is the

calculation you can do actually you can write down what the density will be given c1 is 0 and

what is the density of the total density extra and find this out but usually people use

something else here, they use this likelihood ratio so let me write down what that is? You can

also write down what is the probability of c1 is 1 given r1 this will be sort of similar to this

okay so once again this is also a prior probability and (())(17:21) okay and it is comfortable to

take this ratio here.

It gets rid of some of the quantities that you do not really care too much about okay and you

notice under the assumption of half probability I simply get the ratio of the likelihood, so this

is the post area probabilities and this is the ratio of likelihood. So this is called likelihood

ratio okay and one can compute this quite nicely okay so remember if c1 is 0 implies the

symbol is plus 1 okay and r1 is 1 plus normal 0 Sigma square if c1 is 1 the symbol is minus 1

and r1 is minus 1 plus normal 0 Sigma square okay. So this ratio will work out as 1 by root 2

pie Sigma this is the normal density with mean on the numerator you will have a mean of

plus 1 r1 minus 1 whole square by 2 Sigma square divided by the denominator will have e

power r1 plus 1 whole square by 2 Sigma square okay, so one can simplify this.

I am going to skip the simplification little bit will get overall e power 2 r1 by Sigma square

okay so this is the likelihood ratio probability of c1 equals 0 given r1 divided by probability

of c1 equals 1 given r1 okay. The log of this is called the log likelihood ratio and that you can

see we will work out as 2 by Sigma square times r1 okay. So this is the log likelihood ratio

and this is the... So this is the intrinsic LLR okay. So you can say it is proportional to r1 this

is r1 into a positive factor okay r1 is the most critical component 2 by Sigma square actually

depends on the Channel value, the Sigma channel noise variance if it is small 2 by Sigma

square is going to become very large.

So at high SNR this factor will be very large at low SNR Sigma has 1 or 2 values like that

then the factor is very small okay but nevertheless it is positive factor and in most cases we

will usually ignore this factor okay we will use just r1 to represent this LLR okay, so this

intrinsic LLR is sort of the belief okay this is the belief that we spoke about, okay so this is

just intrinsic LLR it is also referred to as the Channel LLR or input LLR okay so this is

something important to remember, so now whatever your modulation scheme may be

whatever your Channel maybe okay.

When you use an LDPC code on that channel may be you are doing 64 QM instead of BPSK

maybe some other channel like ISI channel or something else you are doing or FDM or

whatever it is you are doing you may have some other factors in there. The 1st step before

using the LDPC decoder or any other soft in soft out decoder is to compute the intrinsic log

likelihood ratio or the Channel log likelihood ratio for a particular bit. So this will be the 1st

bock that will come.

In our case we have just BPSK AWGN it is very simple model, input LLR is simply

proportional to the received value K is proportional to r1 okay so same thing will happen for

r2 as well, C2 probability of C2 equals 0 given r1 divided by probability of C2 equals 1 given

r1 will also be… Probability of C2 equal 0 given r2 divided by probability of C2 equal 1

given r2 will be 2 by Sigma square times r2 okay. So sometimes I like to call this small l1 so

likewise l2 which is let me write this down just for l2 alone probability of C2 equals 0 given

r2 divided by probability of C2 equals 1 given r2 will also work out as 2 by Sigma square

times r2 okay, so the same thing for l3 as well one can write down and expression for l3 okay

so this is input log likelihood ratio.

(Refer Slide Time: 22:27)

Now like I said I am interested in a final belief which is a combination of all the 3 received

values okay so for that what I need to do is the following okay so output LLR okay in my

SISO decoder okay so this capital Li is actually the log of probability of Ci equals 0 given r1,

r2, r3 all 3 received values divided by the probability of Ci equals 1 given r1, r2, r3. All the 3

received values have to be taken into account this is the output LLR this is what I really want

at the output. What is my final belief after having seen all the 3 received values, so if you

have look at the previous calculation it was the Channel LLR or the intrinsic LLR this is the

output LLR which is the final belief after I have seen all the 3 received values okay.

So I am going to compute l1 1st you will see the computation of l1 is quite simple everything

starts once again with probability of c1 equal 0 given r1, r2, r3 we will notice once again

using base rule that this is the joint density given c1 is 0 times the probability of c1 is 0

divided by the overall joint density. So once again this is 1 half equal probability assumption

likewise you can also write probability of c1 is 1 given r1, r2, r3 this will be f of r1, r2, r3

given c1 is one times probability of c1 is one divided by f of r1, r2, r3 okay so this is for the

repetition code of fairly simple computation if you take the ratio you get probability of c1

equals 0 given r1, r2, r3 divided by probability of c1 this 1 given r1, r2, r3 is simply the

likelihood ratio, right?

So it turns out for the repetition code is conditional joint density is easy to write down, so the

repetition code makes that very easy. Let me show you how that is done c1 equal 0 implies

symbol vector this plus 1 plus 1 plus 1, so that implies r1 equals 1 plus normal 0 Sigma

square okay so I will put N1 here r2 is 1 plus N2 0 Sigma square r3 is 1 plus N3 0 Sigma

square and N1, N2, N3 are independent okay something similar happens when c1 is plus 1

symbol vector is minus 1, minus 1, minus 1 and r1, r2 and r3 are minus 1 plus 1 normal

distribution minus 1 plus another normal distribution minus 1 plus another normal distributed

value all 3 are independent because different bits go through independent realisation to the

(())(25:36) so once you know this once you know what happens when c1 is 0 and c1 is 1 you

can plug in the normal distribution so this is independent conditional on c1 equals 0 this 3

values are independent so you can factor the things and multiply out and write down as a

product.

(Refer Slide Time: 25:59)

Let me do that for you here so my probability of c1 equals 0 given r1, r2, r3 divided by

probability of c1 equals 1 given r1, r2, r3 is going to be there will be some 1 by root 2 pi

Sigma which will cancel on both sides so I am not going to write down that part I will simply

write down what happens in the e power down okay minus r1 minus 1 whole square pi 2

Sigma square e power minus r2 minus 1 whole square by 2 Sigma square e power minus r3

minus 1 whole square by 2 Sigma square divided by e power minus r1 plus 1 whole square by

2 Sigma square e power minus r2 plus 1 whole square by 2 Sigma square e power r2 plus 1

whole square by 2 Sigma square okay.

Alright so that was easy enough so notice what happened here the way in which the code

words are setup is quite important here that is why this happened you can do a lot of

simplification, cancelling, et cetera you will finally get 2 buy Sigma squared times r1 plus…

sorry forgot the e power here you will get e power a lot of things will cancel you will get e

power 2 by Sigma squared times r1 plus r2 plus r3 okay.

So if you take log on both sides I will get l1 to be 2 by Sigma square maybe I will write 2 by

Sigma square on the other side because it is a positive factor does not affect too much you get

r1 plus r2 plus r3 times 2 by Sigma square okay so clearly you can identify the extrinsic and

intrinsic part now, this is the intrinsic these 2 are extrinsic okay. So go back and look at what

I did and if you want to change instead of l1 if you want to put l2 you will get exactly the

same calculation so you will see nothing will change eventually l2 will also become the same

okay.

(Refer Slide Time: 28:19)

So finally one can write down that Li can be taken to be r1 plus r2 plus r3 times some

positive factor which we will like I said we will set it as 1 okay so we do not bother about

that positive factor. If you want exact log likelihood ratio you have to incorporate that which

is usually not very there is not very relevant all you need to do is find out the capital Li. Okay

so like I said Li is the same for the repetition code simply add the 3 guys it changes intrinsic

and extrinsic changes but nevertheless it is the same okay.

(Refer Slide Time: 29:04)

So with did a quick derivation here and we show how to do soft in soft out decoding for the

repetition code, how to put out 3 values and find out soft output for the repetition code

hopefully this was easy enough. I am not going to show you the Matlab code for this at this

point maybe I will not do it may be later on we will see that okay but what is more important

is the single parity check code as well, okay so this is the repetition code we started with that

hopefully this is clear.

In the next lecture we will move on to the single parity check code and we will see how to

repeat the same thing for the single parity check code. That involves a slightly more complex

calculation but we will do that and then after that we will write Matlab code for maybe both

the single parity check code and the repetition code okay so like I said these 2 simple

decoders are important ingredients in the decoding of healthy PC codes they will play a very

important role we will see that later okay so will stop here for this lecture we will pick up

with the single parity check code in the next one.

