
Digital Circuits
Prof. Santanu Chattopadhyay

Department of Electronics and Electrical Communication Engineering
Indian Institute of Technology, Kharagpur

Lecture - 65
8086 Microprocessor (Contd.)

 (Refer Slide Time: 00:16)

The subtract instruction so, we have got this sub normal subtract and the subtract with

borrow so, that will come as SBB. So, subtract is similar as ADD. So, it is register 2

register 1 so, register 2 gets register 1 minus register 2. So, like that sorry this should be

register 2 minus register 1. So, this is wrong this should be register 2 minus register 1,

ok. Because that is the destination so, that comes first. And so, that way we have got the

subtract operation. Next we have got the, subtract with borrow so; there here it is fine so,

register 2 gets register 1 minus. So, this should also be register 2 minus register 1, this is

register 2 minus 1 minus the carry flag.

(Refer Slide Time: 01:17)

So otherwise they are same, otherwise it is similar to the ADD operation, then increment

operation. So, there is you can increment an 8-bit register, or you can increment 16-bit

register or you can increment a memory location. So, this INC instructions similarly we

have got decrement operation so, decrement a 8-bit register 16-bit register or memory

location.

(Refer Slide Time: 01:34)

Multiply so, we have got a multiply and register can be specified. So, in this case, AX

will get AL multiplied by register the 8-bit register. And for word operation DX colon

AX will get AX into register 16. Actually what happens is that if you multiply two 8 bit

values so, you get a 16-bit value. So, in multiply operation one of the operand is always

the AX or AL register. So, if you are doing 8-bit multiplication, then it is assumed that

one of the operands is in AL registers, the other one is in the register that is mentioned

here.

And the result is 16 bit and this AX register will hold that 16-bit value. On the other

hand, if you are doing 16-bit multiplication, then whatever register you mentioned so,

that will be it will be assumed that AX is the other source operand. So, the so, this is 16-

bit register content will be multiplied by AX, and the result will be a 32-bit content, and

that will be stored in DX and AX registers. Then the DX will hold the higher order 16

bit, and the AX will hold the lower order 16 bit.

So, similarly we have got this integer multiplication and a division operation. So, that

way also it is similar to that multiplication division.

(Refer Slide Time: 02:54)

Then there is a div instructions so, they are the assumption is that AX divided by the

register 8-bit register.

So, that will be done so, that will come to AL and will hold the reminder part so, quotient

part will go to AL. So, AX is the dividend and register is the divisor and so, when this

division is done quotient will be kept in the AL register and that reminder will go to the

register, remainder will go to the register. For 32-bit operation DX AX pair so, it is a

expected to hold the dividend, that will be divided by the 16-bit register the divisor kept

in this 16-bit register.

And after division AX gets the quotient, and after the DX gets the remainder. So, this

way this division operation will be carried out.

(Refer Slide Time: 03:47)

We have similarly we have got this IDIV instruction.

(Refer Slide Time: 03:52)

Then there is a comparison instructions. So, this comparison so, it will compare the

operand like register 2 register 1 so, we will compare between them. So, if register 2 is

greater than register 1, then all this is the this will be the setting CF equal to 0, ZF is

equal to 0, SF is equal to 0.

And for different if register 2 is less than register 1 then the carry flag will be 1, ZF is 0

and SF is 1. So, this way this comparison will take place.

(Refer Slide Time: 04:19)

Then other arithmetic operation like if register is greater than data, then this will be the

setting, these are the various settings when we have got this comparison instruction.

Logical instructions and or XOR test shift right shift left etcetera.

(Refer Slide Time: 04:32)

So, and is like just like we had got and in 8085. So, and A comma data so, this is I can

have 8-bit data or 16-bit data. So, with AX register they will be ANDed.

(Refer Slide Time: 04:48)

Or we can have or instruction again the same thing. So, or will be done and register 2

will get register 2 or register 1, sorry in this case register 2 will get a register 2 memory.

So, like that the or operation will take place, and then we have got the string

manipulation instructions.

(Refer Slide Time: 05:04)

So, string is nothing but a sequence of bytes or words. So, we can think of it as a

sequence of bytes stored in the memory. So, 8086 instruction set includes instructions to

for string movement comparison scan, load and store. There is one rep instruction prefix

so, it is used to repeat the string instructions. So, if you want to repeat it for some times.

So, you can put it repeat prefix before that instruction. And how many times it will be

repeated? So, that will be determined by the content of CX register.

So, string instructions end with S SB or SW, where S represent the string SB is the string

byte, and SW is the string word. Offset or effective address of the source operand is

stored in the SI register, and destination is in the DI register. Depending upon the

direction flag DF, SI, DI values will be updated. So, if DF is 0, a SI DI will be

incremented by one by one for byte and 2 for words.

So, if the instruction is ending with this B in that case, in that case it will be incremented

by 1. If it is ending with W so, it will be incremented by 2. So, if it is if DF is equal to 0,

on the other hand if DF is equal to 1, they will be decremented by 1 or 2. So, that way we

have got these string value manipulation instructions. So, we will see in more detail

some more instruction examples. And then this rep flag that we were talking about this

rep prefix.

(Refer Slide Time: 06:36)

So, this is repeat this CMPS orscan still ZF is equal to 0 so, 0 flag equal to 0. So, while

CX is not equal to 0, and ZF is equal to 1, repeat execution of a string instruction and CX

will be decremented by one every time. And then REPNZ so, if CX is not equal to 0 and

DF equal to 0 repeat execution of string instructions, and CX will be made equal to CX

is decremented it.

(Refer Slide Time: 07:20)

It is done till z flag is not becomes equal to 1 as long as z flag is 0. So, it will be

continuing like that. So, this is the first instruction that we have moves B. So, moves

byte. So, what it does? It the first address is calculated the source address is calculated as

DS into 16 plus SI. Destination address is calculated at AS ES into 16 plus DI, then there

this content is moved to this destination. And after that depending upon the DF flag

setting DI and SI registers are updated. And moves W so, it is also similar to this only

thing is that 2 bytes will be moved, and then depending upon the DF flag setting DI and

SI will be a incremented or decremented by 2.

(Refer Slide Time: 07:58)

Then this CMPS instruction to compare so, compare which have got compare byte and

compare word. So, otherwise it is similar to this moves B, but it is it is checking the it is

comparing between the strings. So, if this source string is larger source byte is larger than

the destination byte then CF will be made equal to 0. So, this will be the flag setting,

otherwise this will be the flag setting so, it will go like this. Then we have got scan a

string byte or word with accumulator.

(Refer Slide Time: 08:26)

So, it is basically comparison with the accumulator. So, it will compare AL value with

this content of the memory location which is pointed to by DS ES colon DI. And the

other hand, if this is SCASW so, this will compare the word. So, it will be comparing AX

register with the 2 successive memory addresses, which is pointed to by this ES colon

DI. And then DF will be depending upon the DF flag so, it is DI value will be either

incremented or decremented.

(Refer Slide Time: 09:05)

Then we have got load so, it will load the string byte into AL or string word into AX. So,

this loads B so, it will be the source and the address is calculated as DS into 16 plus SI.

And this AL register gets the content of that memory location. If DF is 0 then this SI is

incremented if it is one, then SI is decremented. And this loads W so, this will be moving

one-word from a memory locations in to the AX register.

(Refer Slide Time: 09:35)

So, just the reverse of these loads we have got STOS so, we have got STOSB and

STOSW. So, this is a storing the content of AL register on to the memory address or it is

called storing the content of a AX pair onto this 2 memory locations, MAE and MAE

plus 1. So, that way this loading storing and loading will be done.

(Refer Slide Time: 10:02)

So, then we have got a number of control instructions like this STC like set carry flag

equal to 0. So, they are they are 0 operand instruction the CLC carry flag is 0, clear carry

flag. CMC it will complement the carry, STD set it will set the direction flag like in the

instruction.

So, you are telling if DF equal to 0, then this will happen, or this will happen. So, how to

set the direction flag? So, that is given by this STD and CLD instructions, then we have

got STI and CLI regarding interrupt flags enable and disable. So, we have got this NOP

instruction NOP just like in 8085. So, you have got halt instruction for it is it is halt after

the interrupt is set. And the wait, it is wait for the test pin to become active. So, as long

as this test pin is high so, it will be remaining in the wait state, when the test pin will

become low, then this condition is true so, it will be coming out.

Then there is an escape opcode so, that is used for the coprocessor. So, if you have an

instruction with start with and starts with an escape opcode so, the 8086 will pass on the

instruction to the coprocessor. And this lock prefix so, that will be locked the bus during

the next instruction. So, this if you execute a lock instruction then in the next for the next

instruction. So, bus will not be released by 8086 to others. So, next instruction will be

executing in an uninterrupted fashion. So, this transfer control to a specific destination or

target and they do not affect the flags. So, this control transfer so, we have got call

instruction, return instruction and jump instruction.

(Refer Slide Time: 11:33)

So, call so, this is calling the subroutine. So, the address can be directly mention a 16-bit

displacement a memory location address or a register. So, the register content will be

used as the memory address. In this case, memory location content will be used as the

target address. And here the address is specified directly. And similarly we have got the

jump instruction.

(Refer Slide Time: 12:08)

Then in 8086 conditional branch instruction so, they will they will check the flags, and

then if the condition is true the program control will be transfer to the new memory

location in the same segment by modifying the content of the IP register.

(Refer Slide Time: 12:25)

So, this we have got JE so, JE displacement 8 jump if equal. So, if the equality condition

is satisfied, then it is the 8-bit displacement specified. So, that will be added with IP and

that will be making the 8 bit- jump. So, similarly we have got JNE or JNZ type of

instruction. So, there also we have got this 8 bit, all this conditional branches so, they are

related to the IP address with that to the IP value instruction pointer value. So, it will be

jumping with respect to IP.

On the other end, this un conditional and unsigned conditional branch. So, we have got

this JE displacement 8 and the things like that. So, this will be executing in a same

fashion ok. So, we have so, this values may be unsigned, so, that is that is there.

(Refer Slide Time: 13:19)

So, conditional branch instruction that can affect a flags like JC. So, jump if carry flag

equal to 1 JNC jump if carry flag equal to 0 so, it will go like that. So, there are many

such conditional branches that are available in 8086 that can be used for doing branching

in that.

So, in this way in 8086 we find that we have got a much Richard set of registers we have

got much Richard set of instructions and operations that can be done as compare to 8085

and if you look into these further processors, then the structure will become more and

more complex.

So, all these developments are done starting with digital circuits, where we know how to

design individual logic modules or individual registers individual combinational

functions and all. And from there it is develop towards such complex systems. So, that

they gives a good idea like how we can design complex systems and what are the what

type of complex systems we can digital systems we can think about with using those

basic gates and flip flops.

