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So, in our last class we were looking into negative numbers and we have seen that they

can be represented either  in  sign magnitude format  or 1’s complement  format  or 2’s

complement format. Now, how to get back the number like once it is a negative number

and represented in 1’s complement, how do we know what is the number.

(Refer Slide Time: 00:38)

So, it  is like this for 1’s complement  system so, you can say it  is  so, we define the

function f x to be 2 power n minus 1 minus x, then f of fx is x. So, that is if we apply this

particular function on itself ok so, you will get back the x. So, why because if we are

trying to find this f of fx, then fx is 2 power n minus 1 minus x. So, we put it here.

Now, f of 2 power n minus n minus 1 minus x is equal to 2 power n minus 1 minus this

whole term. So, it is 2 power n minus 1 minus 2 power n minus 1 minus x. So, this 2

power n and 1, they will cancel out what remains is the x. So, if you so, this is the 1’s

complement representation of the number minus x. So, from there if you want to get

back what is the original x so, you can apply the function on it and get back x. So, if you



apply on this f, if you apply on the a apply the function f on this input. So, you will get

back the original number ok.

So, whose negative is actually represented by this representation.  Similarly in the 2’s

complement case also suppose so, this is the formula for getting the 2’s complement of a

number. So, g x is 2 power n minus x. So, we have we have a similar theorem, which

says the g of g x is equal to x, that is if we apply the function g on the result g x. So, you

will get back x. 

So, as a proof we can see that g of g x is equal to g of so, g x is 2 power n minus x. So,

you put it here. So, g of 2 power n minus x and by this logic that gx is 2 power n minus

x. So, we can write the g of 2 power n minus x equal to 2 power n minus; again 2 power

n minus x because this x in the at the place of this x, we have to put 2 power n minus x.

So, we put it here. So, this you this way we get this one so, you get back the x.

That means both in 1’s complement and 2’s complement notation, if you want to get

back the original number whose negative was represented as 2 power n minus 1 minus x

or 2 power n minus x in 1’s complement or 2’s complement, to get back x. So, you take

the 1’s complement or 2’s complement of the number. So, you will get back the original

number x. So, it is helpful for our understanding ok. So, if you are getting a negative

number. So, what was the original positive number. So, we can get back by applying the

function again.
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So,  next  we will  see the representation  for  floating  point  numbers.  So,  far  we have

considered only integers positive and negative, and we have also consider fractions like

say we have seen that this numbers where the number of digits that we are using for

representing it is fixed. So, like we can say we can we have representation like say 15.53.

So, we have seen that this 15 part, we are converting it into some integers some integer

part then this point is there and then this 53 also we are convert into binary to represent

it.

So, that way this representation of a problem comes when this number of bits that are

allocated for this part and number of bits that are allocated for this part they are same

they are fixed ok. So, you cannot change them. So, in so, like if I say the so, for example,

for representing 15, you will need at least 4 bits and for a representing 5 3 properly. So,

you will be again requiring say suppose I give you say 5 bits. So, 5 plus 4 total 9 bits are

available; but if 9 bits are needed, but in a reality so, if we give you say only say 5 bits. 

Then for the sake of accuracy how do you choose like how many bits we can give for

this integer part and how many bits we can give for the fractional part. So, if you are

using this real number representation in the form of fixed point notation. So, there are

problems in terms of accuracy. So, we will see that we can do better by realizing them in

the floating point form.

So, we will be looking into this floating point representation in the in the next few slides.
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So, this real numbers so, two’s complement numbers that we have discussed so, far they

this they deal only with signed integer values and without modification these formats are

not suitable  in scientific  or business applications that deal with a real number values

because of the accuracy and all.

So, floating point representation, they will solve this problem. So, we can we will see

that this floating point representation so, they can help us in having a better accuracy and

all.

(Refer Slide Time: 05:43)

So, if in fact, before going into this discussion on this floating point representation one

thing we should keep in mind that ultimately this floating point is a representation is

nothing,  but  collection  of  a  some  integers.  It  is  a  every  floating  point  number  is

represented by means of a collection of integers.

So, if a if in the programming we can use some tricks by which we can do this floating

point operations ourselves. So, if underlying a machine or say operating system, it is not

supporting  that  floating  point  representation  also.  So,  as  a  programmer  so,  you can

always do that and you can use the integer formats for representing different components

of the floating point number and represent it that way.

So, this is known as the floating point emulation because the so, because the floating

point number is not stored as such. So, we just create programs that so, that it seems like



we as if we are handling floating point numbers. But most of the computers that we have

today or  the processors  the  advanced processors,  they are equipped with specialized

hardware that  can do this  floating point arithmetic  without any special  programming

requirement.

So,  this  is  very  important,  because  otherwise  whenever  you  are  you  whenever  you

represent this floating point operation by means of software, the overall operation will

become will become slower, because software is always much slower compared to the

hardware.

So, if the hardware directly supports the floating point format. So, it is better. So, most of

the processors that we have now the advanced processors so, they support these floating

point  formats  in  the  hardware  itself.  However,  these  are  not  embedded  processors

because these are not dedicated for the floating point operation only. So, they do many

other things, but they also support the floating point operation.

(Refer Slide Time: 07:37)

So, how do we represent a  floating point?  So, floating point numbers  they allow an

arbitrary number of decimal places to the right of the decimal points.

For example so, floating point means so, we can have any number of digits after this

decimal point. So, that is the floating point; obviously, for actual representation so, it

cannot be arbitrary. So, there has to be some higher limit on the number of digits that you



have after the decimal point, because a computer has got any processor or computer it

has got a finite word size. So, we cannot go beyond that anyway. So, if you are multiply

0.5 by 0.25 you get 0.125.

So, you see the problem the point that is the this point the that this bullet tells is that

these numbers,  0.5 and 0.25,  they have 1 digit  after  decimal  here and 2 digits  after

decimal here and in the result I have got 3 digits after the decimal. So, after decimal how

many digits will come. So, that is not fixed. So, that is why it is a floating point. So, in a

scientific notation so, we can represent it like this, the say this 0.125 that we have got so,

it can be represented as 1.25 into 10 power minus 1, say this 5 they are 6 0’s after 5 is a

very large number.

So,  you can  represent  it  as  5.0  into  10  to  the  power  6.  So,  you see  that  if  we are

representing it in this format, then the numbers they have got two components. The first

component is a number and the second part is a power of 10 ok. So, that way we can

have different levels of we can the range of the numbers that we are going to store. So, it

becomes larger because we are we are converting it into this format.

(Refer Slide Time: 09:26)

So,  computers  they  use  this,  but  this  type  of  scientific  notation  for  floating  point

representation.  So,  numbers  written  in  scientific  notation  they  have  got  three

components; one is the sign another is called mantissa, another is called exponent. So,



the sign is whether the number is positive or negative that is all right, then the mantissa

part. 

So, mantissa we will have a particular format like in this case so, we are assuming that

we have got 1 digit before the decimal point so, only 1 digit before the decimal point. So,

this is a 10 power minus 1 so, that is the exponent part. So, I need to remember this sign

bit this 1.25 and this minus 1 to know what is the number that I am going to store. So,

they are called sign mantissa exponent representation.

(Refer Slide Time: 10:17)

Computer  representation  of  floating  point  numbers  so,  they  consists  three  fixed  size

field. The sign field is definitely there so, that is the that is a sign then the exponent part

that is the power of 10 that we are talking about so, the exponent part and the significant

part.

So, significant part is the in the previous example where you when you are talking about

mantissa. So, that is actually told as significant here. So, exponent is same. So, this is a

very standard arrangement of this field that is the after sign the exponent will come and

then the significant will come. So, depending upon the number of bits that you allocate to

different portions, the sign will definitely be 1 bit, but this exponent and significant. So,

you can assign different number of bits to tell like how many up to what power we can

represent  or  up  to  how many digits  after  decimal  point  so,  we can  represent  in  the

significant form.



So, although this significant and mantissa they do not technically mean the same thing

mean. So, they can be used interchangeably ok. So, we will see why they are not same.

(Refer Slide Time: 11:25)

So, the one-bit field is the sign value that is stored here, the size of the exponent field it is

determines the range of values that can be represented, as I have already said. The size of

the significant it determines the precision of the representation.

So,  if  I  say that  this  significant  is  32  bit,  then  after  decimal  point  we are  going to

represent 32 up to 32 bit we are taking the precision. So, if you if you if more number of

bits are available for the significant part. So, I will have better precision and less number

of  bits  means,  I  will  have  less  precision.  So,  that  way  this  exponent  mantissa  and

significant parts are there to this term.



(Refer Slide Time: 12:08)

So, we will take a very simplistic example ok. So, for our discussion so, a hypothetical

simple model to a explain the concepts. So, we will think that the floating point number

altogether I am giving it 14 bits ok. So, this entire from this entire structure that I have

so, that is given 14 bits. So, out of that sign will take 1 bit. 

So, we are left with 13 bit out of the 13. So, exponent part we are giving 5 bits and the

significant part we are giving 8 bits. So, this is the this is our simplistic model a 14 bit

representation of floating point numbers.

(Refer Slide Time: 12:49)



So, what can we do with this? The significant is always preceded by an implied binary

point. So, it is suppose I am going to represent a number say a 5.5 into 5.52 into 10

power say 3.

So, what we will do. So, we will not represent it like this. So, we will take it as 0.552

into 10 to the power of 4 ok. That that the, that is why the significant is always preceded

by the implied binary. So, binary point is always at this at this point. So, at the very first

one is the binary point ok. So, we do not need to store it explicitly, meaning that it starts

with the binary point. So, significant always contains a fractional binary value like here it

is 0.552 as I was talking about.

The exponent part so, it  is a power of 2. So, instead of since I am representing in a

computer. So, instead of 10 power. So, I will be calling it 2 power ok. So, it is a power of

2. So, it is. So, it is 5.52 into 2 to the power something. So, 10 to the power 3 means

1000. So, it is may be 2 power 10 is 1024. So, it will be close to that ok. So, that way I

can so, I that the exponent part is power of 2 instead of power of 10 that we are that we

are looking into.

(Refer Slide Time: 14:18)

So, suppose I am trying to represent the number 32 in decimal system into this 14 bit

floating point notation that we have into introduced. So, 32 is 2 to the power 5 so, in

binary notation by scientific notations.  So, 32 will  be 1.0 into 2 to the power 5. So,

scientific notation means, before decimal point we have got 1 digit and in case of this



floating point representation that is followed in the computer system. So, we have got a

decimal point it starts with the decimal point.

So, this is 32 in scientific notation is 1.0 into 2 to the power 5, in our notation it is 0.1

into 2 to the power 6 ok. So, why do we prefer the second one? So, we will see slightly

later. =So, this 6 ok so, 6 is 110. So, in the exponent part we put 110 and total 5 bits are

allocated to the exponent part out also in this in this 5 bit location, we stored the value

6110, and then on the significant part.

So, we have to keep only this 1 that we have so, because this point is implied here. So,

we have to I have to keep this 1 and 1 is represented like this. So, this is so, 1 0 00 0 like

that. So, it is 1 0 0 0 0. So, it will be 0.1 into 2 to the power 6. So, that represent again

32. So, so this is. So, we put 1 1 0 in the exponent part and 1 in the significant part as we

have shown here.

(Refer Slide Time: 16:03)

So,  these  are  all  equivalent  like  say  the.  So,  this  is  the  representation  they  are  all

representing 32. It is 32 into 2 to the power it is it is 6. So, it is 1 into 2 to the power 6.

So, this is point 0 1. So, this is 0.01 into 2 to the power seven then it is 0.001 into 2 to the

power 8. So, that way these multiplying by 2 will be shifting it by 1 position in the

binary representation.



So, that way all these representations, they have the same value which is 32. So, they are

they are synonymous ok. So, they, but they can also cause some confusion. So, we need

to  have  some  standardization,  because  otherwise  what  will  happen  is  that  different

computers may be storing information in different format. So, as a result understanding

may become confusing ok. So, we have to use some fixed notation.

(Refer Slide Time: 17:06)

So, another problem with the system is that we have no we have no allowance we have

for the negative exponent. So, we have got this sign bit, but that is for the entire number,

but suppose I have to represent say 2 power minus 3. So, I do not have any of the any

technique by which I can represent minus 3.

So, we have no way to express this 0.5. So, that is 2 power minus 1 why? Because this I

cannot  have  I  cannot  tell  that  my exponent  part  is  minus  1.  So,  I  can  take  tell  that

exponent part is 1, but I cannot tell it to be minus 1, there is no sign bit. So, this problems

can be fixed with no changes to our basic model. So, we can keep this exponent both

positive and negative.
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So, how do we do this? We will see slowly. So, to resolve this problem of synonymous

forms that is for the same number we have got multiple representation so, we have to

have a rule ok.

So, some rule has to be followed and the rule is that, the first digit of the significant must

be 1 with no ones to the left of the radix point because it is a binary representation. So, it

is zeros and ones. So, I will say that my significant can never start with a 0. So, if you

just look into this slide. So, you see that this representation we are telling ok, but these

three  representations  we are  telling  that  they  are  not  correct  because  my as  per  my

convention. So, this significant part must start with a 1. So, it cannot start with a 0 ok.

So, that way we put we make a rule, that the first digit of the significant must be 1 and to

the left of it to the and there will be no 1 to the left of the radix point. So, before radix

point there is no digit or no bit, but after radix point we have always it always starts with

a 1. So, this is called normalization ok. So, this process is called normalization like say

4.5.

So, 4.5 when you are representing so, this is 100.1 into 2 to the power 0. So, we can tell

it like this. So, it can also be like 1.001 into 2 to the power 2, it can also be 0.1101 into 2

to the power 3. So, we will say that the this representation is correct because it does not

have any one to the left of the radix point, to the left of the radix point there is only 0.



Similarly, here to the left of the radix point we have 1. So, this representation is not

correct, but this is correct and in the right side. So, its it starts with a 1. So, the in the here

if you do. So, it is right side this starts with 0. So, it is not correct. So, here it is starting

with a 1. Here also its starts the right side starts with a 1, but on the left side we have got

some digits ok. So, that is not correct.

So,  there  should  not  be  any  digit  to  the  left  of  the  radix  point.  So,  the  only  this

representation is correct in as per our convention. So, all significands must have the form

0.1 xx xx like that. So, its starts it must start with it the bit before decimal point should

be 0, and after decimal point the first bit should be 1. Accordingly we have to adjust the

exponent part ok. So, we can adjust the exponent part and that way we can do it.

So, in this model so, we have we use no implied bits ok. So, but it is it is 0 directly, but

the implied bits we will see later. So, this is known as the process of normalization.

(Refer Slide Time: 20:46)

Now, how do we go for this negative exponents ok? So, negative for the for the purpose

of negative exponent. So, the technique that is used is known as biased exponent. So, a

bias is a number that is approximately midway in the range of values expressible by the

exponent, and we subtract the bias from the value in the exponent to determine its true

value.



So, we have got in our example we have got 5 bit exponent. So, 5 bit exponent means.

So, it can go from. So, if I if I am using negative numbers also. So, it can go from a

minus s16 to plus 16. So, 5 bit is all the bits may be 1 ok. So, it may be I. So, by so, I

may be so, it is minus 16 to plus 16. So, this out of this total the in 5 bits. So, I can have

32 different patterns 32 patterns. So, diff 32 different exponents can be stored.

So, I can make it I can I can divide this range on the negative side minus 16 and the

positive side say plus 16 and then what we do? We um with the value with we stores add

another 16 ok. So, we add another 16 what whatever be the result that is actual actually

stored. So, this is called excess 16 representation. So, we will take an example that will

make it clear.

(Refer Slide Time: 22:29)

See this one says we are again coming back to example of 32. So, 32 representation we

have seen that  we are following this  notation  0.1 into 2 to  the power 6.  So,  in  our

previous case the a significant part was a storing this 1 and the exponent part was storing

this 6, but we do not store 6 there. So, what we do with this 6 we add 16. So, that way it

becomes 22. So, we will be storing 22 in the exponent.

So, here if you look into the all possible bit pattern so, you can if you look into sorry if

you look into all possible bit patterns here, then it is all 0 to all 1 so; that means, I can go

from 0 to 31. So, in that range what I do. So, I add 16. So, if I add 16, then this will

become this 6 will become 16 plus 6 22. So, I stored the pattern of 22 here knowing that



when we are calculating the value. So, this is in this is. So, 16 extra has been added. So, I

subtract 16 from here and I will get back 6 ok.

So, if I have a negative number if I have a negative number. So, the negative can go till

say minus minus 16. So, that way that even 16 will be added to that. So, that number will

become 0 the exponent will become 0. So, this way we do not have to store the negative

exponents separately. So, in the following this excess notation so, this mid value will be

added to the exponent and that will be stored. So, the negative numbers will also come as

positive numbers only.

So, in the storage so, that is known as the biased exponent concept; so, exponent has

been biased by the middle of the range. So, that everything becomes positive.

(Refer Slide Time: 24:35)

So, next we have another example suppose it is 0.0625 in the binary in the in the decimal

representation. So, this 0.0625 is 2 power minus 4 because. So, in so, this is 2 power

minus 4. So, in the scientific notation that we are having so, this will be represented as

1.0 into 2 power minus 4 or in our notation. So, it is as per our rule. So, it is there should

be only 1 digit after there should be no digit before decimal. So, this is 0.1 into 2 power

minus 3.

So, this is the value that we are trying to store finally, in the computer for example, now

what we do we take an excess 16 notation. So, with this minus 3, 16 is added. So, the



value becomes 13. So, ultimately in the exponent part we store 13 we do not store minus

3, but we store 13 knowing fully well that when we are looking back for the value. So,

from this whatever is stored there. So, I have to subtract 16. So, it was excess 16. So, 16

was added while storing it. So, while getting it back. So, I have to subtract 16 and then

only I can get it back ok.

So, that way I can do we I can go back to 2 power minus 3 and this part this a significant

part remains unaltered. So, this is known as the biased exponent concept.

(Refer Slide Time: 25:58)

Another example so, suppose and to we represent the number minus 26.625 in this 14 bit

representation. So, since this is minus. So, this sign bit should be 1 now this 26.625. So,

if  you  represent  it  in  binary  notation.  So,  it  is  like  this  11010.101.  So,  we  do

normalization. So, after doing normalization so, it is like this. So, this is the format we

want to store in the computer, but. So, this significant part is storing it 1 1 0 1 1 0 1, but

for the exponent part for the exponent part. So, we take again excess 16.

So,  with  this  5  16 will  be  added.  So,  this  becomes  21.  So,  this  21  is  stored  in  the

exponent part. So, this way we can store the numbers in the system.
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So, now so, this is the standard that we were we have developed the model that we have

the 14 bit representation of model that we were using. So, IEEE has got some standards

for this floating point numbers. So, there it is IEEE 754 standard and they have got one

standard for single precision number and another standard for double precision number.

So, for 60 for a single precision number so, it uses 8 bit exponent with a bias value of

127 and a 23 bit significant; On the other hand this a double precision number, it has got

eleven bit exponent with a bias of 1023 and 52 bit significant. So, that is a very very

huge number. So,  that  way we can represent  very large numbers in double precision

format with higher precision values.
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So, both single precision and double precision use the significant has an implied 1 to the

left of the radix point. So, in our model to the left of the radix point we have only 0, but

in case of this float this IEEE standard so, of to the left we have got a 1. For example,

this 4.5 is actually this one, in our notation it will be like this, but in IEEE format so, it

will be 1.001 into 10 to power 2 because that will be so, the this 1 is implied. I do not

need to store this 1 explicitly I in the in the storage I will only have this 001 in the in the

significant part, but this 1 is implied.

So that means, so, in our case what was happening is this 1 we were storing separately

and,  but  that  way we were actually  wasting a  bit  ok.  So, we were wasting 1 bit  of

storage, but using this 1.001 or 2 power 2. So, we can we so, that we can say 1 bit ok. So,

that way we can have a better representation.
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So, this for example, this minus 3.75 so, this floating point representation so, it will be

like this. So, minus 3.75 is minus 11.11. So, minus 1.111 into 2 power 1.

Now, this bias is 127. So, 127 is added to 1 so, it becomes 128. Now the sign is negative.

So, the so, this is the sign now, this part is so, before decimal. So, this is this is the

exponent. So, 127 and then we have got this implied 1 and after that we have got this 1 1

1 0 0 0. So, this 1 is already implied. So, this 1 this 1 need not be stored separately.

(Refer Slide Time: 29:35)



Floating point number range for 32 bit number with 8 bit exponent and plus minus 2

power 256. So, that is about 1.5 into 10 power 77 a huge number.

Now, accuracy so,  this  is  the change that  will  come if  you change the LSBs of the

significant part. So, if I have got 23 bit significant then the accuracy is 2 power minus

23. So, that is 1.2 into 10 power minus 7. So, that is up. So, if this turns out to be 6 places

after decimal. So, that is a huge number accuracy is good.

(Refer Slide Time: 30:08)

The numbers that you can express so, that way you can see that in 2’s complement range.

So, it is minus 2 power 31 to plus 2 power 31 minus 1, but in floating point numbers. So,

you have got a huge range ok. So, this is minus 1 minus 2 power minus 24 to 1 minus 2

power 24. So, that way so, they that is a huge number of numbers that you can store here

ok.
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So,  similarly  we can  have  this  floating  point  representation  for  this  single  precision

floating point. So, these are this representation can be there and this flow 0 0 over this 14

bit model that we have used.

(Refer Slide Time: 30:38)

So, that is that that will also have similar such thing, but this 0 with this IEEE 754 so,

this allows two representation of zeroes.

So,  we  have  got  minus  zero  indicated  by  all  zeroes  in  the  exponent  part  and  the

significant part, but the sign bit can be either 0 or 1. So, as a result there is a plus 0 and a



minus 0 in the in our representation as well as IEEE 754 presentation. So, this suggests

that we should not have this floating point we should not check whether the value is 0 or

not, because of the sign bit mismatch. So, it may not be giving the correct result in a

program. So, you should not try to check whether x equal to 0, where x is the floating

point number and this negative 0 does not include equal to positive 0.

(Refer Slide Time: 31:41)

So, this floating point representation. So, it can we can do addition subtraction etcetera.

So, that will be doing that we will do using a similar to integer arithmetic. So, this we

will see in the next class.


