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Welcome and so, in the we will be continuing down with the from where we left in the

last lecture, and that is on multi-layer perceptron’s to deep neural networks, and this is

where we would be introducing. So, while till the last lecture we had a good amount of

briefing and a recap of the learning rules, and how to create down this single model and

then a single perceptron and then a whole collection of perceptron’s in terms of it is

matrix and the matrix form of representing the data. 

From  there  going  down  to  the  gradient  and  what  happens  with  the  gradient  based

learning rule and then trying to come down to the point of how do we calculate  the

gradient of the output itself. So, your Del del W of JW how it gets broken down into

partial products over there, and using these partial derivative products how you can find

out the total derivative of the network itself.

So, from there we would be entering into the multi layer perceptron model of a deep

neural networks and how it works out. 
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So, just to do a brief recap of where we left  down in the last class,  that was on the

gradient computation part say I have 3 scalars x 1 x 2 and x 3 and then I would like to

map it down to another predictor scalar which is my p hat, and then how this network

was constructed is that I had 3 weights w 1 w 2 and w 3, they were all put into a linear

summation block, and there was another added component of what is called as the bias. 

Now taking down all of these linear summations over there, and the bias together you get

an output called as y, and that is mapped down through a non-linearity to your predicted

output p hat. Now while we have done the forward pass which is from x how to get down

to p hat, the question which we had raised is how to get down this derivative, and at first

we are doing a partial product of different derivatives.

So, you take the derivative of the cost function which is derivative of J W with respect to

the output which is p, then you take a derivative of p or the predicted output with respect

to y which is the output from the summation block, and you take a derivative of y with

respect to w which is known as the derivative of the linear part of the network. 

Now and how this was so, these were the 3 different parts where we left off in the last

class. Now the point is that this kind of a computation is what holds true for just 1single

neuron and the next point  is  that  if  it  is  not just  one single neuron, but you have a

collection of neurons or something which is a deep neural network.

So, one network so, 1 bunch of neurons in one layer then you have another bunch of

neurons in another layer, then another bunch of neurons in another layer typically what

you called as a multi-layer perceptron due to it is multiple layers form over there.
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So, that is exactly what we are speaking about. So, I have my bunch of inputs x which

connects down to a set of intermediate nodes over there, that connects to another set of

intermediate nodes and that subsequently to another set of intermediate nodes and finally,

you get your final predictor which is a p hat, where each of these intermediate nodes

when you are connecting now is what is called as my hidden layer.

Now, the point is that we did find out how to get my output from when I just have one

single neuron to connect. So, my inputs to my classification neuron and how to get a

derivative, the question is that here also you will need to get down the derivative in it is

own way, but then in order to get this one you see that clearly there is not just one single

connection  which  connects  down  the  inputs  to  my  output,  but  it  passes  through  a

multiple set of non-linear transformations along the depth itself. 
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And that is where comes the major question which we have so, what we do in that case is

something tricky. So, let us look into this small part of the network. So, what we do is

say that I am looking at one of my particular layer which is say called as the d-th layer.

Now for my a d-th layer what will I will have done is I can write it down in terms of this

partial products which is del del p of J W, then I can have del del so del del y of p, which

is my output from there. 

Now that can be done as an extended product of del del W of y d which is output which

is the linear part of summation which comes down to that particular plot. Now if I go

down to my d minus 1th layer. So, this is my w d which is just connecting down my

output to the d-th layer. Now if I go down to one layer before it now what we can see is

that this del del y of sorry, del del W of y d. 

So, which is the derivative of this linear part of this block with respect to the weights

which are connecting these 2 this blocks over, there can also be written down in terms of

a partial product of the output of these blocks, which are z s over here with respect to the

partial derivative of the linear part of this one with respect to the block earlier it. 

So, this is my d-th layer the output weights connect down to my d-th layer to my target

output layer over there, this is my d minus 1th layer and this is the connections, which

goes down. So, this is my w of d minus 1 and that is where my expansion happens. Now

and similarly I keep on repeating this whole thing together on the chain and finally, what



I would get down is on the final part which is del del W of y 1 which is my first output

layer over there and that incidentally is equal to whatever is my inputs over here. So, if

you just look into your matrix form of representation of y and w s in terms of so y w and

x which is you just have a linear product of the weight and the x, so that is our dot

product  which  gives  rise  to  this  output  over  here  y  so;  obviously,  my  output  my

derivative of the linear part of output with respect to my weight is going to give my input

to it which is my x over here. 

So, this is a typical way in which we calculate now our whole networks gradient over

there. So, if I want that my total network has to be solved out. So, this is exactly what I

would be doing in terms of my calculations so, you can typically look. So, now, that I do

not have what is my input coming from here. So, what I would be doing is I do not know

exactly what values are over here so, I will be again differentiating this with respect to

this and that is what the chain rule keeps on doing. So, every time you have a del del W

of y d. So, you keep on going to the next previous one. 

So, over here like this block that block will again be represented in terms of this dot

product of 2 partial fractions, partial derivative multipliers over there. And these 2 partial

derivative multipliers will again keep on going and subsequently the final point where it

stops is a del del W 1 of y 1 and that is equal to my input which is x. So, I believe this

part is quite clear to you guys and quite intuitive actually not so, hard to calculate you

know.
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Now, the next point is that I have my final form of the whole derivative going down

something like this. Now that I have this form going down, so my first part of it is what

is called as a derivative for my cost function or known as grad of JW the gradient of my

cost function. The second parts over there is my derivative of the non-linear transfer

function. 

Now the other part is the derivative of the perceptron itself and which together is what is

called as a derivative of the network and finally, is the input to the network which is my

x. So, these together is what constitutes of any sort of a learning mechanism within a

multi-layer perceptron or any kind of a deep neural network. So, what you will have to

do is you will have to find out what is my derivative of my cost function, you will have

to  find  out  the  derivative  of  the  network  which  together  consists  of  2  parts  of  the

derivative  one is  derivative  of  the  non-linear  transfer  function,  and derivative  of  the

perceptron together, and you will have to find out what is that. 

So, this is always known to you because you are just pushing in the input to the network,

now by solving out this complete derivative over here is what we are able to get down as

our neural network learning algorithm in terms of gradient descent, and that is where it

goes down. So, that brings us to a very important aspect over here and which called as

the existential criteria.
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So, what this essentially means is that in order for the total derivative of the cost function

to exist with respect to weight, you need to see that every single fraction of the derivative

exists. So, every single part over there we were doing a chain rule of expansion. So, if

every single component of the chain rule exists only in that case you would see that the

total derivative of the network as well exists, and you can now learn on it in a perfect

way. 

So, my first component over there which is del del p of JW is what is called as the

derivative of the cost function, and that part should be existing. So let us take down a

very simple example which is let us take down these 2 cost functions. So, the first one is

what is called as the l 2 norm the second one is what is called as the l 1 norm, and let us

see if it is derivative exists. 

So,  I  would  give  you this  just  some moment  to  ponder  on  this  one  and like  really

contemplate on what do you think, that is the derivative exists for each of them, so what

you can do is quite simple I mean you can just take a del del W del del p of J over here.

And then just find out whether the derivative can exist or not, now interestingly what

will happen is definitely it does exist for the first case which is Euclidean norm. So, and

then that is not so, hard to contemplate as well because I mean for any kind of an l 2

norm existing existence of a derivative is the pretty a straightforward case, now you have

the second one. And this is where the fun is so, do you think that the derivative of this 1



will exist as well or not just take down a few seconds over here, while I just wait. So, if

you look into this one carefully the derivative value should not exist,  and one of the

reasons why this will not exist is that you will have some sort of a discontinuity at 0.

You see you have an l 1 norm or just a mod. So, mod of p minus p hat this 1 over there is

basically a value which is always a non 0 value, and this hat does have a discontinuity at

x equal to 0 and that is one of the reasons why this direct absolute summation will never

have a derivative.  Now let us look into the other part of the network, and that is the

derivative of the non-linear this will the derivative of the rest part of the network. 

And now over here, one important point is that the derivative of this non-linear transfer

function or f NL that should also be existing otherwise your del del y of p that will not

come into existence whereas, del del y of z that does not have any issues, because that

keeps on expanding over and over, but your del del y of p is something which needs to

exist at every single non-linearity wherever you are putting now. 

So, let us take 2 different cases of nonlinearities over here. So, you see the first one is a

sigmoid function, which I have as a non-linearity the second one is a one by mod set or

this  is  something  like  the  inverse  of  the  activity  the  input  which  goes  down to  the

network  itself,  but  absolute  value  of  the  input.  And  now  the  question  is  does  the

derivative of each of them exist or not. 

So, let us give you some time you can calculate out the derivative of the first function

which is your sigmoid non-linearity, I will give you a couple of seconds to yes calculate

this part. So, if you look carefully over here, what you would see is that for the first case

which  is  my sigmoid  non-linearity  the  derivative  does  exist,  and that  is  a  perfectly

differentiable function. 

Whereas,  look  into  the  second  part  of  that  that  again  is  something  which  is  not

differentiable, because of the discontinuity at x equal to 0 right. So, this are 2 some like

really  interesting  facts  because,  like  remember  in  the earlier  class  in  the  first  weeks

lecture where we were discussing about neural networks and how to make them. So, that

is where you were exposed to this concept of what is a non-linear transfer function as

well as like what are the different property. So, one property was definitely to make it

bounded in some form, but we also mentioned that the there are other properties and one

of those important properties is that the cost function itself sorry not the cost function,



but the transfer function itself needs to be differentiable in it is own term. The question

was why do you think it needs to be differentiable is something which gives you an

answer over here, and this is one of the major reasons why you need a transfer function

to be differentiable from end to end over there. Until and unless a transfer function is

differentiable the derivative of the complete network cannot exist and that is the reason

why you cannot take transfer functions like say signum of x. 

Because if you take a signum function that will again have it is a it is a like, plus 1 for

any value which is greater than 0 and it is minus 1 for any value, which is less than 1 and

it becomes sort of 0 in order to be made precise, but the point is at x equal to 0 you still

see a discontinuity coming down into those function. 

And that is the reason why these kind of functions cannot be made cannot be used into it

because they are not differentiable, and cannot get our total compliance within the way

of how a neural network is going to act and make it is learning in the reverse way. And

that brings us to the point of trying to visualize down our learning rule itself. So, now,

say that I have a multi-layer perceptron, and I have my inputs x s which connect down

through intermediate weights w 1 up to w d and go down to my final output which is p

hat.

(Refer Slide Time: 14:56)

And the way of how we are doing down is something of this sort and the first step which

is called as the forward pass of the network. And this is something similar to what you



had done in your laboratory classes in the last week, where you well learning down how

to actually learn down a perceptron model, and for classification purposes we had used a

similar kind of a concept over there as well. 

So, you would do a first would be a forward pass of this x in order to obtain your p hat.

Now that you have your forward pass and you have obtained some p hat over there

within a particular given epoch. The next point is that I need to compute out my J, which

is my cost function the way of computing this J, or the cost function is that I have my

output my predicted output which is p hat. I have my ground truth of my predictors

which is p, and then I need to find out what is the Euclidean distance and that was my

straight forward way. 

Now Euclidean distance for finding out my cost function is not just the only way though

we are just sticking down to a very basic form over here, because you have seen that

your  cost  function  also  needs  to  be  differentiable,  and  if  the  cost  function  is  not

differentiable, then it does not work. So, we will be going down with more detail cost

functions in a bit later down on this course, where we will be bringing in very specific

cost functions. 

Which are designed for classification will bring in very specific cost functions which are

designed for regression problems. So, they would eventually come down, but as of now

let us stick down to the very basic form of the Euclidean cost function. So, the next part

is that you would be computing whatever is your cost coming down for a given epoch,

and whatever combination of weights you have now. 

Once you find out your cost function you would be finding out what is the gradient of

this cost function or the del del p of JW that is the first part which was my nabla of g or

the gradient of J now. Once I have my gradient of J the next part is to compute my

gradient of the network or nabla of network, and this gradient of the network is what is

the gradient of my p, with respect to wise and wise with respect to w, this was my net. 

So, my intermediate points over there for all of these hidden layers where what they are

giving me some outputs called a z so, what I was doing is I would in my grad off net is

what is my p of y with respect to w, and then that gets again remolded in terms of the

output z with respect to t with respect to y s and eventually this keeps on going down the

line. So, once I have this part also computed and this is very straightforward to compute



down by solving out those sets of equations know, where it comes down the utility of

most of the libraries for deep learning is that you do not need to explicitly sit down, and

calculate these 1 on pen, and paper or you will not even have to write down a separate

the bunch of codes in order to design them. 

If you are using very standard forms of cost functions and very standard forms of non-

linear a transfer functions over here, then calculating this and this part so, grad of J and

guard of net is a very straightforward activity to be undertaken. Now by any of those

standard deep neural network libraries say the library which we are going to use down in

the next class. 

Onwards is what is called as pytorch and that has very standard ways of doing it so, but

there you would be in standard doing something like this that you do a forward pass you

get down your output from there you will be calculating what is your error in terms of

cost from there you find out what is the gradient of the cost from, there you will be next

computing out the gradient of the network. Once you have the gradient of the network

then you will be doing at update w, and this update w is something which will happen in

the reverse way as you had seen in these arrows. So, once you invoke update w, then it

would be going down updating all the weights from the output side to the input side

together. 

And then next is to continue again with step number 1 which is do a forward pass of x

obtain p, and then repeat all the steps together until and unless you find that your cost

function J over there is so, this will keep on continuing till your cost function J is above a

certain threshold value which is epsilon. So, the moment you go below this threshold

value. So, you can set empirically set this values. 

So, this threshold value can be say something like 10 power of minus 3 10 power of

minus 4 10 power minus 5 or even as small as so it can be larger values as well. So, they

can  be  one  2  something  of  that  sort  it  all  depends  on  the  problem which  you  are

handling, but then so, often I do get this question that how do we choose this value of

epsilon. Now that is something which well be covering down a bit subsequently in the

later  classes  by coming down to an  understanding of  the  dependence  of  data  to  the

architecture of the network to the kind of non-linear transfer functions you use and what

is the nature of the cost function which you are using over there. So, while certain kind



of cost  functions  they have a  like  large  dynamic  range.  So,  they  some kind of  cost

functions and have a value in the range of say 1 to 10 some of them have a value in the

range of 100 to 10000 some of them, have value which are in order of 10 power minus 3

or 10 power minus 40. 

So, this epsilon has to be chosen based on what is the nature of the cost function you are

using and what is the nature of the non-linear transfer function you are using, and before

that it is like really hard to tell down until, and unless we enter in to that. So, while we

will be entering into these very practical experiments, we would becoming known to

them 1 by 1 and in the lab sessions to understand how these are to be used and finally,

the end is that once you are below your certain threshold of error, you can just go and

stop the whole learning process. 

So, what typically happens is that within your learning over there in while you will be

writing down your codes, you would be coming across some very well-known terms, and

then say net is basically a pointer which is used for defining network and so, if you look

onto the screen over here, will be getting them out. 

So, basically net is a variable which defines it is a pointer to the data structure of how to

define this neural network a net colon forward is basically what executes this part of it,

which  is  to  get  down your p  hat.  Next  is  a  criterion  colon forward  which  executes

whatever is the output of this J. The next part is a criterion colon backward. 

So, these parameters which go as arguments over here are not indicated over here. So,

these are the ones which we will be studying down in the lab classes itself, but it is not so

hard to guess down what these parameters would be so, if doing a net colon forward. So,

what I need is the parameter over here which goes down is just this x over here, the

output of this will be; obviously, p hat. So, now, if I want to do a criterion colon forward

I will have to give down p hat, and what is the actual state of p or the ground truth these

2 will be the input to the criterion function.

Next is when you find out the gradient of the criterion itself,  for the gradient of cost

function, that is what is evaluated using something called as a backward operator, and

this backward operator what it would be needing now is basically the so I know this

pointer to this whole thing. So, what it needs is basically whatever is my predicted output

and over here so, what is my cost function. Now the next one is the net colon backward



and this is what will be needing this output and this input together. So, it is not so hard to

get it down, because if you go back to the earlier slides into the equations you would see

from there how this relates. 

And now once this is done the next part is that you need to update parameters of the

network. So, this input over here is the this network the pointer of the network net over

here, and these 2 backward operators or these 2 gradients which are calculated and then

that together will update down w following the update rules, and this will be updating all

of these weights not just one of the width. 

So, each weight so it goes in a subsequent fashion for this one updates, then this updates

and this is what would finish off what is called as one single iteration or one epoch of it,

and eventually you can now trace down your error and then either decide to stop or you

can continue.
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So, this brings us all most to the end of trying to understand a deep neural network from

a multi-layer perceptron model, and at the end of it what I would like really suggest you

is that you can do much more detailed reading from the textbook on neural networks and

learning  machines  by  Simon  Haykin  and  for  toolboxes  side  of  it  while  for  neural

networks it is like the most simplest thing, which a lot of people get started with is the

neural network tool box within mat lab which is for pattern recognition. So, that is the



NPR tool you can alternatively also look into Theano and Scikits learn in python and Lua

for torch. 

And other  aspects  we would be doing down though the labs  with Pytouch which is

basically a port off so, it is very recently ported out version of torch which can walk

down with python environments, and makes it much more easier because of the rest of

the script availability within python, and in is based on something called as a dynamic

graph  based architecture  which  allows  us  to  compute  these  forward  passes,  and the

gradients much easily in a computationally attractive form.
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And finally, if you are like really into getting down into more deeper understanding. So,

the typical suggestion is that they do not tend to these networks do not tend to work

down. So, great on laptops you might experience heating problems as well. So, the best

point  is  that  get  on a  custom workstation.  So, I  mean a very competitively  built  up

workstation can be achieved with GTX 1060 or a GTX 1080, and 1080 TI machines. So,

this in Indian rupees this would be costing in less than a bracket of 1 lakh rupees to get a

total desktop raised and setup. You can get done much more professional ones with the

titan x or tesla version or you can even think of buying down any of these, for tool boxes

these  are  again  multiple  of  these  toolboxes,  and just  to  for  a  revision  these  are  the

different reading sources from where you can read down. 



And these are the 2 major conferences which where you would see down most of these

advancements in the field coming down. So, with that we come to an end on deep neural

networks and multilayer perceptron’s on the lecturing, and theory in the next class we

will  be doing a lab session where you would be going to a good walk through, and

getting to execute it on your side or as well as on the remote clusters to which you can

gain access under certain kind of academic licenses as well. So, with that thanks and stay

tuned for the rest of the classes as well.


