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So,  welcome.  Today  we  would  be  starting  up  with  our  next  version  which  is  on

Multilayer Perceptrons to Deep Neural Networks. And while in the earlier lectures we

have all studied about what neural networks are, and we have done a few lab sessions as

well on and that was about just understanding neural networks from a classification point

of view.

And now where the extension comes down in perspective of visual computing is that,

here in contrary to what we were doing in the earlier  classes was that,  in the earlier

classes while we were using feature extractors and feature descriptors which are hard

coded functions over there in order to describe an image. And then we extended all the

summary or the synopsis coming out of each of these feature descriptors together into a

classification of framework using a neural network.

On the contrary today when we are going to do it, here is when a neutral network itself

has to come down to be an end to end learning framework, which means that input to the

neural network itself is an image, while the output from it is still a classification output.

So, it can be a classification, output it can be a regression output any of these things

which come out. So, where we would start down very specifically is that, here we are

going to look into a multilayer perceptron and that is our starting point, and from there

eventually we will enter into what is known as the deep neural networks, and then what

are their existential criterions and how they are work.
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So,  effectively  we would be doing a  basic  review of  the perceptron  model,  and the

perceptron learning rule once again,  and then entering into the multilayer  perceptron

from there we enter into something called as the signal flow graph representation, and

this model of a signal flow graph is how is my input and my output related and what

happens during the learning phase. 

And this is a quite critical part over here, since in the last lecture and the lab which we

had done. So, you were introduced to the concept of error back propagation, and from

there we had a gradient descent based learning rule. Now what exactly happens in telling

this as a error back propagation and why it happens the way it has it has been named, and

what you have seen down in different snippets of code is what we are going to explain

you through this signal flow graph representation.

Following that is a very important aspect about gradient calculation, and that is to show

down what  happens  within  these  functions,  and whether  the  gradient  is  just  for  the

classification cost function or then or does it need to exist throughout the network. And

that is where we will enter into something called as an existential criteria for the network

to exist and all other transformations and cost functions also to exist, and then eventually

go down to the learning rule. And from there we more or less come down to an end of

what happens were done with these kind of deep neural networks.
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So, as with a simple neuron model, just to do a brief recap of what it was; so, say that

there were 3 inputs over here, in the earlier case last week when we were doing it. So,

these were given down as features say 3 different features, but here now this these are no

more 3 different features, but these 3 can be 3 pixels. So, you can consider just 3 pixels

in an image, and give them as an input to the. So, the pixel in its own way or it can be

even say for a given pixel in colored space if you have one particular image in RGB

color space. So, each component itself is represented as one independent scalar value.

So, your x 1 can be the red value of a pixel, x 2 can be the green value of a pixel x 3 can

be the blue value of a pixel and accordingly. So, er pixel basis you can make some sort of

a decision coming out as well.

So, let the decision associated with a particular pixel over here b p hat. And now with the

simple neuron model what would happen is that, we will have a weighted combination of

these inputs going down to a neuron and from there add down a bias, take a summation

out over them and this summation is what is has what has this form. So, its w naught plus

w 1 x 1 plus w 2 x 2, plus w 3 x 3, where each of these weights w 1, w 2 and w 3 are 3

weights associated with each of the 3 values x 1, x 2 and x 3 and w naught is what is

called as the bias or the 1 w naught can also be written down as 1 into b where say b is

the weight over there and the constant input to this particular edge over there is what is 1.

So, in its linear algebra form which is in its matrix representation, this is a form which



you would be getting now. So, you get y is equal to the inner product or the dot product

of 2 matrices.

One  of  them is  the  weight  matrix  where  you have  the  weights  and  the  bias,  taken

together and the other matrix is a column matrix over there. So, that is why its x comma

one transpose; where x is this scalar arrangement. So, capital  X is basically a matrix

arrangement of these 3 scalars which you get down over here. Now having taken all of

them together, the next part is to apply some sort of a non-linearity and that is the fNL

non-linear function which you get down over here. And these nonlinearities can have

multiple different forms and we consider these 2 forms over here. The first form is called

as the sigma the second one is called as the tan hyperbolic non-linearity and to do a very

basic recap.

So, you remember that in sigma what happens is that as the value of y tends towards plus

infinity, this value tends towards plus 1 as the value of y tends towards minus infinity

this value tends towards 0. And on the contrary with the tan hyperbolic what happens is

as the value of y tends towards plus infinity you get a value which is saturating at plus 1,

as the value of y tends towards minus infinity you get a value of this non-linearity which

is at minus one. So, taking these 2 together is either one of them you can be using now

and based on, whichever you are using your p hats value will appropriately be decided.

So, if your p hat has the non-linearity associated as a tan hyperbolic its value will be in

the range of minus 1 to plus 1. If it has sigmoid as non-linearity then its value will be in

the range of 0 to 1 and this was the simple perceptron model which we have done.
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Now, from taking down a perceptron to getting into a neural network formulation, which

is that given I can have multiple kinds of inputs over there it can be different kinds of

scalars over there, and I can map it down to again a different group of scalars. So, maybe

my first prediction over there is what is called as p 1 hat, and this will be the form of

representing everything to my p 1 hat. Now note over here that as we had also discussed

in the earlier class is that these weights are no more with just one subscript, but there are

2 subscripts which you see with these weights 1 comma 2, 1 comma 1, 1 comma 3. Now

the reasoning behind these weights is that the first subscript is to the target where it is

mapping. So, the output over here say I have x 2 which goes to y one and that eventually

maps down to my target which is called as p 1. 

So, my first subscript is going to be the subscript of the target, my second subscript on

the weight is the subscript of the source from where it is connecting,  and that is the

nomenclature which we are following. Now if I arrange all of these weights w 1 1, w 1 2,

and w 1 3 in a row matrix form then that is what is written down as this bold w 1, which

is the matrix given down in the equation. Along with that I have my scalar value which is

my bias w 1 0 or b 1 and accordingly x is my x comma one transpose is my column

vector which comes down and this gets my inner dot product and then my non-linearity

applied.



Similarly  if  I  take  down  my  second  neuron  on  the  output  side  of  it,  and  feed  it

appropriately. So, I would be getting down this second part of the partial network coming

down and my group of equations which represent that.  Now projecting onto this and

going out similarly. So, I can have my xj th neuron connected down to my yk th neuron

with a weight which is called as w k comma g, and then put a impose non-linearity on

top of it. And then taking all of them together this is a particular form where I get where

w subscript k is a rotate row vector which has a size of. So, the number of connections

over there will be basically from 1 to g, which is because that is a total number of xs

which you have over here. So, for this combination this is a particular kind of an output

relationship which we see. 

Now if you look into this matrix of weights and biases which are come together, then

you can see down that all of these are outputs which I see y 1, y 2 up to y k. So, if I take

all of these together and just concatenate them. So, I arrange them in a column form in a

call in a column major format, which is that it is just has k number of rows and just one

column over there; accordingly my bias b that can also be arranged into a column matrix

over there. 

So, these are the 2 matrices which we see over here, and then my w each of these w 1 w

2 up to w k they can also be stacked one on top of the other, because each is independent

of the other one and now that would give me some sort of a rectangular matrix. Now if I

clearly look into it then my total transformation equation over here can be written down

in terms of just a matrix multiplication. So, this will be a matrix multiplication of my

weights w s and b bias these 2 kinds of matrix with the input over there, which is erased

as a matrix and then that gives me an output matrix over there.

And this output matrix is a column matrix; my input matrix is also a column matrix. So,

that is my y and then I have a non-linearity applied on a matrix, which means that each

element of the matrix is appropriately subjected to the non-linearity over there, and then

taking all of them together is what I get down as my target output. So, this was my very

basic understanding of how a neural network works down as such, and then this was

what we had done with multilayer perceptron in the last class itself.
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Now, again going down a bit  more into the revision part  over there;  so my error in

prediction how it was different was that if I have one of these predictors p 1, then I get

down one value of a scalar for another predicted each p 2, I get down an others error

which is e 2.

Now if I have an array of these predicted variables over there, then I cannot keep on

calculating each and every error singly because in that case I do not get a consolidated

knowledge about the total network as such. So, in order to do that, what we do is we find

out what is the Euclidean error over there. So, a Euclidean error or the total error of the

network is basically a scalar value which is the Euclidean norm or the l 2 norm of all my

predictors. So, whatever is my actual ground truth which is p, and my predicted value p

hat. These 2 matrices are subtracted and then you take the amplitude of that or the l 2

norm of these 2 subtractions.
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So, and given that the next part is that you will be doing a back propagation in order to

learn down your algorithm. So, the idea is that you have these successive bunches of

observations and predictions, and what is the ground truth.

So, if x 1 is a matrix is a of all of these scalar xs over there, and one of these samples is x

subscript 1. Then the ground truth corresponding to that is what is p subscript 1 and at

any given point of time, when you feed the whole data x subscript one through your

network you would be getting down a predicted value which is p hat subscript 1. So,

similarly I take my input sample as x subscript 2, and I feed it  forward through my

network I get a p hat subscript 2, while the actual ground truth over there is p 2. So, I

keep on doing this together and then for my n-th sample which is my last sample in my

training data over there. 

As I feed my last sample through my network over there my output is p n hat and that my

actual ground with corresponding to that is p n. So, together if I have all of this. So, what

you would see is that, there comes an error which is there for each sample. So, for my

first sample, second sample, third sample till my n-th sample I will be getting a different

value of error, but can we give some sort of a consolidated error for the network in terms

of its performance across all of these training examples which we are taking now. 

And for that reason we devised another metric which is called as the cost function of the

whole network in terms of its weights. Now that is what is defined as j w over here, and



that is a summation of the Euclidean distance between these predicted p and the actual

observed and the actual ground truth of these p s we just supposed to be there. 

Now if you look into this cross function over there what we said is that j w is your cost

function where these varies in terms of your weights which are w. Now what comes

down definitely in some bodies mind is that, why is it varying with respect to something

called as a w? And the reason is that this w s are weights which are the only thing which

now  would  be  guiding  down  and  accordingly  manipulating  what  happens  to  your

predictions over there.

So, because there is not anything else on which it can change. See my input x is constant.

So, that will be different number of samples and across samples and across. So, between

2 samples it will be a different value that is always known, but when I am training across

an epoch learning, which we had done studies in the last classes as well. 

So, when you are training across epochs what happens is every epoch you are going to

send the same sample over there the only reason why the prediction value bit of putting

down the same sample. So, say at my first epoch which is my epoch number 0 over

there, I put down x 1 as my sample and I get down a predicted value p 1 hat. I do all my

updates and everything and then it comes to my second epoch which is epoch one in my

epoch one I put down x 1 it would be getting known a different value which is p 1 hat,

but p 1 hat at the epoch one is very different from p 1 hat at epoch 0. 

And the only reason why this was changing is a within the network, the only variable

component is week which changes. So, that is the reason why we would write down this

cost function in terms of our weights itself. Now that I have my cost function written

down in terms of my weights, my final point is that we need to come down to a point

where to a point in the weight space, such that my argument of these cost functions is

minimum or as I keep on it says the point is that, if we keep on changing the weights

there will be one particular combination of these weights such that my error is minimum,

and that is the exact one which I would like to achieve. 

Now and how that achieved is through something called as the gradient descent learning

rule. So, in this gradient descent learning rule what we do is basically that its an iterative

process, in which what you do is you start with some randomized assumption of weights



in the first epoch, and then see that is w k and then you compute or whatever is your

gradient of the weight space over there in terms of your cost function.

And that is del del w of j w, and then you weigh it by a factor an empirical factor which

is called as eta also known as a learning rate. So, what this controls is that, your gradient

of this error function over the del del w of j w that can have any range of a value. Now if

the ranges of say these w weights are in a range of 0 to 1, and then say my del del w of j

w is in a range of 10 power of minus 9. 

So, the rate at which it would be updating or impacting the value of w is going to be very

less, and in that case this eta factor over here comes to your rescue; because what you

can do is you can set an eta factor say 10 to the power of 6. So, if I multiply your value

in 10 a power of minus 9 to a value of 10 power of 6 that will put me a give me a value

which is in the range of 10 power minus 3. And that value is something which will

actually be impacting significantly how the value of w is changing over there.

So, this learning rate basically is a fact way of mathematically modulating the gradient

over there, such that we have a value of this error and the gradient coming down which

will be in some way significantly impacting the change in w, and that is how my w of k

plus 1 will be revising at a much better rate, then w of k would have if we did not have

this learning rate called as eta. 
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Now given that we have all of this done, so, what typically happens within a gradient

based learning rule is something like this, that you would be starting down on your first

epoch and an then as you change these case. So, you will be getting your first value of j

w, based on your j w you would be calculating your gradient, multiplying that with your

empirical constant eta or the learning rate and then you update your w to w of k plus 1.

As you update it to w of k plus 1 you would be getting a different factor of j w, which is j

w of k plus 1 and accordingly these keeps on changing and so on and so forth till you are

at the final conclusive step over there. 

Now this was one way of trying to visualize our learning in terms of its cost function

versus epochs and this can be a typical graph. So, you would often be seeing that you

start with a particular error and your error increases and then keeps on decreasing, or it

may so happen that it increases then keeps on decreasing and suddenly again its a local

maxima it increases slightly then goes down, it may keep on jittering. And these are all

aspects about what is happening within the learning itself. 

So, if your value of eta I mean you can keep your value of eta very very less in that case

what will happen is it will come down very slowly, but it will be a very smooth transition

which it will be getting. If your value of eta is very high then it can start oscillating and

jittering over there and; that means, that its basically overshooting the local minimum

point at every time, when its coming down somewhere closer to the local minima and

these  are  different  issues  which  we  would  be  tackling  down  through  experimental

processes and some more learning experiences subsequently.
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Now, looking at the same part of gradient descent again in the weight space, what we had

learnt was that say I start with some random value over there, and this is my point and if

I. So, here what I am doing is typically I am looking into 2 different plots. So, one is my

plot  of epoch versus cost function,  the other  is  my plot of weight  space versus cost

function and these are 2 different aspects as such. 

So, the second epoch when I update my weight; so it shifts to a different weight vector

coordinate  over  there,  and  subsequently  I  have  a  different  cost  function  value  also

calculated through it, and subsequently it goes to the next one then to the next one and

finally, to my convergence. Now if you look into this part of the plot what you would see

is that, for any kind of a perceptron model you would be seeing that the error function

over there form some sort of a very structure, which quite mimics a cascade like design

where you have multiple number of crests and troughs present over there. 

So, as these points of my weights they keep on moving down, they would always be

encircling and coming down to my local minimum point as soon as possible, and the way

it comes down to this local minima is what is my learning which is happening. And also

from the last lecture about introduction to deep learning and what happens within this

multilayer perceptron line challenges, you did understand that one of the major points is

that we can actually initialize a network at any random point over there, and based on

that it can start converging and oscillating around any of these trucks and that definitely



means that where it  is going to converge is now some sort  of dependent on where I

started. 

If I started down in the neighboring one, then it will be in the rough of the neighboring if

say there is no global minima, but everything is equivocal point over that there is no

unique  global  minima  in  that  case  now. If  we have  unique  global  minima  then  the

challenge  is  obviously  that  you  do  not  lock  into  any  of  these  non  global  minima

positions, but rather somehow escape into this from this small trough like regions and

exactly converge onto your global minima position.
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Now, having said all of this, what comes down to our mind is something interesting. So,

you have seen that there is for any kind of a given network, if I have 3 different scalar

values over there then I can take in these scalar values, and I can predict out one of these

predicted outputs over there. And for a simple perceptron how it goes down is something

of this sort that I have my weights w 1, w 2 and w 3, I take all of these weights together

and then I sum them up and accordingly I get now my bias also coming into play and

then I am wrapping down to my output over there ok.

The question is that now that I need to find out my del del w of j w, then what would I be

doing. So, in order to solve it out, the best possible way is basically trying to look into

something which is called as the chain rule of differentiation which you have done in



your high school mathematics itself. So, what goes down by the chain rule is that, we

would try to break down all of these into its constituent components. 

So, the simplest way of doing this is that let us bring down this derivative product which

is partial derivative of j w with respect to w, because we cannot directly compute. So,

what we will be doing is. So, you know that the output of this j w. So, j w was a cost

function and that was for our case a Euclidean distance of the predicted output with

respect to the ground truth. So, I do not have any component of x as such directly visible

neither my weights directly visible over there. But what I have is definitely my p hat or p

over here which is my predicted output state.

So, I can take a derivative of the cost function with respect to this output, next is my

output is dependent on y through our non-linear function. So; that means, that I cannot

take this partial derivative of p with respect to y. Now if I look till  the first 2 partial

fractions on my right hand side over there. So, you can see that del del w of j w can now

be represented as a product of del del p of j w and del del y of p. 

So, together these 2 first 2 parts of other will give me del del y of j w coming down. Now

the next part is now that I have a del del y of j w I should be getting on another part of

the partial fraction which is partially a partial fraction of these derivatives, which is my

del del y of del del w of y which is my output of this summation block in my neurons.

So, together this is what will help me in getting down my total gradient computation.

Now, the first part of this gradient which is the grid which is some sort of a derivative of

the cost functions. If you look into the second part of the gradient, then you see that its a

derivative or the non-linear transfer function. And if you look into the third part of the

derivative that is a derivative of the linear network itself. And these 3 things together are

what will be helping me in finding out the gradient part for my whole network in order to

learn.

So, with this I will end up our lecture for today over here and in the subsequent lecture

we would be starting up with this point on gradient computation, and subsequently going

down to  how this  can  be  extended  for  a  multilayer  perceptron  and  then  enter  into

eventually the deep learning, and how to train down these deep neural networks and then

what will be the exist engine criteria.



With that, thank you and stay tuned for the next lecture.


