Deep Learning for Visual Computing
Prof. Debdoot Sheet
Department of Electrical Engineering
Indian Institute of Technology, Kharagpur

Lecture - 60
Activity Recognition using CNN-LSTM

Welcome to the last lecture of this series. And this is where the sweet part and so over
that. Now nonetheless so, we are working on this week on video analysis and video
activity recognition classification and these kind of problems. So, while on one part you
have learned about the theory of how to treat down these videos and as a tensor
representation. And what is the implication of having these tensors in a newer format of

representation.

So, well down where what dimensions are going down in which particular level over
there on your tensor. And that is the last lecture we have also done using a 3D CNN,
which was you try to do a spatiotemporal convolution on top of videos, and then come

up with a classification system for your videos as well.

Now, today we are going to do come down to that other version of it where you can use
some sort of recurrent neural network, or which is a time scale modelling neural network
over there. And the particular one which we had studied in the lectures were called as a

LSTM or long short-term memory.

So, today’s particular exercise on the lab implementation is basically using an LST, but
nonetheless you do recall that while we were studying LSTM and in order to handle
down videos, what we had was you would take in and decompose a video in terms of it is
frames. Now, you have a CNN from where you get down some sort of latent
representation in terms of features, and then these are not exactly your class labels over
there for classification, but then these are features which would end up going down as a
time series stamped data onto your LSTM in order to come down with prediction per

frame basis.

Now, either you can predict all the frames in a series, and what is the class level for them
or the other one is where you can predict only the terminal frame over there based on all

the previous frames which have come. So, we are going to stick down to the latter, where

you are going to speak just classify the terminal frame based on whatever has happened
on all the frames before it. And that is the kind of a classification which we are going to

do.

So, we are going to use the same data set, which is this UCF 1 1 data set, where you have
101 different classes of activities which have to be recognized by this kind of a learning
engine. Now, as in the earlier case, we had not used all the 101, but just 5 of them. So,
here also we are going just going to stick down with 5 of them. And in fact, the data

preparation and everything is going to stick down to the same way.

(Refer Slide Time: 02:38)

~ Jupyter lecture60a @ oo
File Edit View Insert Ce Kermel Widgets Help Trusted Python3 O
B + x @B &+ HRn B C W Makdonn o B

60a: Train CNN for activity classification

Note:
1. Run lecture59 preFrocl.ipynb before running executing this
notebook
2. Files lectureéla.ipynb, lectureélb.ipynb, lectureé0
are part of the same tutorial and are to be exeuted sequ
¥
Dataset: UCF101

So, let us get in over here so, what we have is we have broken down these lectures into 3
different notebooks to make it easier for you to understand and keep on running. The first
one is where we do the preprocessing of training CNN in order to extract out these

features over there.

Now, if you look through it the first and foremost thing is that you need to have this
lecture 59’s preprocessing part already executed, because you would need to have access

to these frames extracted from the video and kept down in one particular ordering.

Now, if that is not present and this part does not work; So, that is one part of the exercise
which from the last lecture which you need to essentially implement and keep it ready on

your side. The next part is that you have three different parts over there which is 60 a, 60

b and 60 c. So, I am starting with 60 a now, and then eventually would be going down to
60 b and 60 c. So, 60 a we are just going to learn down on how to train the first level

CNN and not the LSTM yet coming into picture.

(Refer Slide Time: 03:42)

~ Jupyter lecture60a P Lo
File Edit View Inset Cel Kemel Widgets Help Trusted Python 3 O
B 4+ A B 4+ HRin B C W Makdown - B

I ——

In [1]: $matpletlib inline
import torch
import torch.nn as nn
import torch.nn.functional as F
from torchvision import transforms,datasets, models
import torch.optim as optim
from torch.autograd import Variable

import numpy as np

import matplotlib.pyplot as plt
import copy

import time

nee omn = torch ends is availablaed

Now, as in with any kind of a CNN which we had so, we are just going to stick down to
the first part of the header, and that is a pretty standard header which we have been using
for all of them.

(Refer Slide Time: 03:55)

~ Jupyter lecture60a @ Lo
File Edit View Insert Cell Kermnel Widgets Help Trusted # |Python3 O
+ % @B 4 ¥ HRin B C W cCoe o @

import numpy as np
import matplotlib.pyplot as plt

import copy
import time

use gpu = torch.cuda.is available()
if use gpu:

pinMem = True
else:

pinMem = False

trainDir = 12

valDir = 'test Sclass'

apply transform = transforms.Compose ([
transforms.Resize (256},

Now, from there it is to check down if GPU is available or if it is not available and. So,
what we do addition to that one is that we stick down this extra configuration which is
called as pin memory, and pin memory is basically something which is hardware
dependent. So, what it essentially does is that your CPU has multiple number of buses
over there, which connect down to your hardware resources including your RAM

including the PCI bus, and then the dm allocation over there.

So, if pin memory set down as true. So, what it allows is that across different batches
which are getting loaded down over there, because you have some sort of a parallel data
loader coming into play. Now, once this data loader comes into play if the memory is
channel is defined over that, then the arbitrator does not come into play over there and

this will speed up the whole process. So, this is what we need to define over here.

Now, in case that you do not have a GPU, then you can pretty much set it to false and
that is something which is recommended. The only concern about putting the pin
memory true for using within a GPU was so that because it is a shared bus between your
CPU to your RAM and your PCI bus via which your GPU is connected. And if you are
setting this true then this arbitration does not have a lot of overhead time requirement

coming down over there.

So, this is the only reason over there, you can implement the same thing with all your
earlier exercises as well. But you will not be seeing too much of a change in terms of
execution time. Here the whole change comes in because the amount of data which you
are handling which needs to be loaded down from the hard drive side over there is
seriously massive. And for that reason, this really makes a significant impact on what

would happen with using it or without using it.

(Refer Slide Time: 05:31)

— Jupyter lecture60a @ oo
File Edit View Insert Cell Kermel Widgets Help Trusted # |Python3 O

B + x @B 4+ HRn B C P coue | =2

pinMem = False

trainDir = 'train Sclass’

valDir = 'test 5cla

apply transform = transforms.Compose ([
transforms.Resize (256),

transforms.CenterCrop(224),
transforms.ToTensor()])

train_dataset = datasets.ImageFolder (trainDir,transform=apply tran:
trainloader = torch.utils.data,.Dataloader (train dataset, batch size

test dataset = datasets,ImageFolder(valDir,transform=a
testloader = torch.utils.data.Dataloader (test dataset,

So, the next part is we basically have two different folders over there, which is created
down from the lecture 59 process preprocessing part of the code. And that is one of them
is called as the train underscore 5 class, which is at the training folder, and the other one

is your testing data folder over there.

Now, what we need to do is that we take in all of these videos, and we resize them to
256, 256 size, and then we do a center crop of 224 cross 224. Now one of the reasons for
doing the center crop of 224 cross 224 is that; obviously, you your rest of the network
over there most of these being ImageNet kind of a network. They would be needing a

data of 224 cross 224.

The other part of it is that significant amount of pixels on the boundary over here for
these particular frames; they are not in any way informative. And that is the reason why
we decide to crop from the bit way middle part over there. Now, this is very much typical

to what you are trying to do and what is your philosophy over there.

Now, we have just found out this kind of technique to be much better suited for most of
these problems over there. And sometimes if you feel that your peripheral parts of the
image also have some info information which is significant towards video analytics and
does capture some of the motion information, then please do not discard by cropping it

out please retain those parts of the information as well.

The next part is to load down all of these data, now what you have essentially within
these two folders is basically a few more folders which have image frames extracted

from the video.

(Refer Slide Time: 07:11)

~ Jupyter lecture60a @ Lo
File Edit View Inset Cel Kemel Widgets Help Trusted # |Python3 O

B + @B 4+ MHRn B C P codo |2

apply transform = transforms.Compose ([
transforms.Resize (236),
t:ansfc:ms.fenterfrcp[..l].

transforms.ToTensor()])

train_dataset = datalsets. ImageFolder (trainDir, transform=apply tran:
trainloader = torch.utils.data,Dataloader(train dataset, batch size

test dataset = datasets.ImageFolder (valDir,transform=apply transfo:
testloader = torch.utils.data.Dataloader (test dataset, batch_size=

'+str(len(trainlca
: '#str(len(testLoade]

And so, here the whole job is basically from your image folder, you would be initializing
your data loader. So, you are trained data set is something which resides inside your
image folder. So, this is what we have done in the earlier cases, where your whole data

was located within a folder.

So, what you could do is you have to point down a pointer which goes into the directory
structure over there, and that acts as initialization pointer for your data loader. And then
your trained data loader or as well as your test data loader any of them can initiate their

workers to keep on loading it out.

Now, you need to specify your batch size and we are choosing down 128 batch size over

here, and the number of data loading workers has 4.

(Refer Slide Time: 07:37)

Jupyter lecture60a @ o
File Edit View Insert Cell Kemel Widgets Help Trusted # |Python3 Q

B + x @B 4+ HRn B C P coue | 2

arm=apply transform)
set, batch size=128, shuffle=True,num workers=4, pin memory=pindem)

=apply_transform)
t, batch_size=128, shuffle=False,num workers=4, pin_memory=pinMem)

set: '+str(len(trainloal
nt('No. of samples in test set: '+str(len(testLoade|

Now, this number of workers is pretty much dependent on your hardware configuration
which is the total number of memory channels which are available to your system. So, if
that is 4 then you setting it down to 4 is good. If you are setting it down to any value
lesser than that it works out good, but then you are under killing you are you are

basically killing down the advantages which you heard about otherwise gone.

And now, if you are setting it to a value greater than 4 then what would happen is that
most of the time you will not be able to have the best optimization of resources, because
these extra workers will still be part, they are not going to do it because you do not have

a physical channel available anyway.

Now, another part is that we decide on shuffling over here, and this is to get into your
option of a stochasticity coming into play, which meant that basically if we have a

stochastic gradient descent or an Adam kind of an optimizer coming over there.

Then across different Epochs when it starts any invoking this data loader over there, then
the same batch at different Epochs should not be having the same amount of data. or the

same day should not be having the same samples over there basically.

So, then you do with some sort of a shuffled out so, this shuffling set down to true is

something which is helping me do that, but in case of my test data I am not going to use

that shuffle because it is just a feed forward and a validation state. So, in fact, this shuffle

has an some extra time incurred on top of it. So, we do not make use of that.

(Refer Slide Time: 09:10)

~ Jupyter lecture60a @ Lo
File Edit View Insert Cell Kemel Widgets Help Trusted # |Python3 Q
B + @B 4 % HRn B C W code | 2

LesL Qarasel = gaLasels, Unagerolaer |(Valuln, LLansiorm=apply Lransrol
testloader = torch.utils.data.Dataloader (test_dataset, batch_size=

In [4]:
4str(len(trainloader.dataset)’
f samples in test set: '+str(len(testLoader.dataset)))
No. of samples in train set: 75143
No. of samples in test set: 19815
Define network architecture
In [5): net = models,resnetl8(pretrained=True)
print (net}
F (bnTY: BatchNorm?d (64, eps=1e-05, momentums0.71, aff1

Next so, we just get down what is our total number of train and test samples and this was

pretty straightforward.

(Refer Slide Time: 09:12)

~ Jupyter lecture60a @ Lo
File Edit View Insert Cell Kermel Widgets Help Trusted Python 3 O
+ ¥ @A B 4 ¥ HRn B C W cCode d | @

Define network architecture

In [5]: net = models.resnetl8(pretrained=True)
print (net)

I (bnl): BatchNorm2d(e4, eps=le-0%5, momentum=0.1, affine=True]
(relu): ReLU({inplace)
(conv2): Conv2d(64, €4, kernel size=(3, 3), stride=(l, 1), p
adding=(1, 1), bias=False)
(bn2) : BatchNorm2d(64, eps=le-05, momentum=0,1, affine=True)
)
(1) : BasicBlock(
(convl): Conv2d{64, 64, kernel size=(3, 3), stride=(
adding=(1, 1), bias=False)
(bnl): BatchNorm2d(64, eps=le-05, momentum=0.1, affi
(relu): ReLU(inplace)

Now, getting into our network what we are trying to do is use a resonate 18, and we use a
pre-trained network which was trained on the ImageNet data set itself. So, that there are

2 advantages one is because it is a pre-trained network. So, it is easier to converge over

there um, and definitely the major advantage which you get down is it since it converges
that is no way a great advantage over there; But then your total number of Epochs which

we would have otherwise taken to train this whole network that is also going to be less.

So, it is a very faster way of getting down. So, this is one stage of domain adaptation
which we also apply to over video analytics problems. So, this is just a printed version of

it, and since we have done a lot of them I am not going through these any further.

(Refer Slide Time: 10:10)

~ Jupyter lecture60a @ Lo
File Edit View Inset Ce Kemel ~ Widgets Help Trusted # |Python3 O

B + @B 4+ HRin B C W code |2
h.8ize([256, 128, 1, 1])

2 ([256])

[256])

+([256, 256, 3, 3])

[256])

[258])

net.fc = nn.Linear(512,5)

if use gpu:
print('GPU i ailable!')

net = net.cuda()

GPU is available!

Now, the next point is getting into your parameters and printing it out now this is also
straightforward from your earlier exercises, and there is nothing major which comes in.
Except for the fact that now we will have to modify this network to be suitable for the

kind of a model which we are using.

Now, our job is to classify it into 5 different classes. So, I am just going to replace this
last layer over there. So, my last layer was basically on my resnet was something which
was connecting 512 neurons on to a 1000 classes, or 1000 neurons over there for

classification.

Now, here I do not have 1000 classes, but I just have 5 classes. So, I decide to replace
this last layer over there with a linear connection of 512 neurons to 5 neurons
straightforward. Now, if a GPU is available just typecast and convert it on to GPU; So,

that you can set everything running on the GPU side over there.

(Refer Slide Time: 10:55)

~ Jupyter lecture60a @ o
File Edit View Insert Cell Kermel Widgets Help Trusted # |Python3 O
B + x @B 4+ MHRn B C B code d | @

Define loss function and optimizer

In [9): criterion
optimizer

nn.NLLLGss () # Negative Log-likelihood
eptim.Adam(net.fc.parameters(), lr=le-4) # Adan

Train the network

iterations =1

trainloss = []

=4[]
testloss = []
testhcc = []

trainkce

Now, on my criterion now the cost function for training is negative log likelihood loss,
and it is because it is a classification problem, and we have been sticking down to the
same loss function for majority of them and for optimizer we stick down to taking Adam

for faster and better convergence coming into it.

(Refer Slide Time: 11:14)

_ Jupyter lecture60a @ o
File Edit View Insert Cell Kemel Widgets Help Trusted # |Python3 O
B + x @A B 4+ MHRn B C B code J @

iterations = 1

trainloss = []
trainicc =

testloss =
testAce = |

0]
0]
]

start = time.time()

for epoch in range(iterations):
epochStart = time.time()
runningloss =

avgTotalloss =

running correct =

net.train(True)
batchium =
for data in trainloader:

Next comes into our training part over there, now for the training it is against
straightforward that we just initial initialize these losses which we need to take down

over there, and then start our data loader working down over there now within the data

loader, what I am going to essentially do is, look whether my GPU is available, then
typecast my inputs and which are input images and the labels over there onto a GPU

variable.

(Refer Slide Time: 11:23)

~ Jupyter lecture60a @ Lo
File Edit View Insert Cell Kemnel Widgets Help Trusted # |Python3 Q
B + x @B 4+ MHRn B C B Ccode =]

batchNum = 1 y

for data in trainloader:

inputs, labels = data

$ i.'

if use gpu:
inputs, labels = Variable(inputs.cuda()), Variable(lak
outputs = net(inputs)
_, predicted = torch.max (outputs.data, 1)
running_correct += (predicted.cpu() == labels.data.cpu

else:
inputs, labels = Variable(inputs), Variable(labels)
outputs = net(inputs)
_; predicted = torch.max (outputs.data, 1)
running_correct += (predicted == labels.d

optimizer.zero_grad()

And then do a feed forward over the network and get my output. And then I have my

prediction of the predicted classes over there.

Now, these predicate classes can be used for finding out how many of them are correct

and how many of them are wrong.

(Refer Slide Time: 11:54)

~ Jupyter lecture60a @ Lo
File Edit View Insert Cell Kernel Widgets Help Trusted # |Python3 Q
+ ¥ @B 4 ¥ HRn B C W Code J{ B3

inputs, lapels = variaple(lnputs), variable(lapels)
outputs = net(inputs)

_, predicted = torch.max (outputs.data, 1)
running_correct += (predicted == labels.data).sum()

optimizer.zero_grad()

loss.bﬁci(;:ard{}

optimizer.step()
runningloss += loss.data[(0]
batchNum += 1

Now, once this part is done, so, I can actually set my optimizer coming into play so, for

that the first part is to 0 down all my gradients.

(Refer Slide Time: 12:03)

~ Jupyter lecture60a @ Lo
File Edit View Insert Cell Kemnel Widgets Help Trusted # |Python3 O

B + @A B 4+ MHRn B C B cCode J | @
optimizer.zero_grad()

loss = criterion(F.log_softmax(outputs), labels)
loss.bﬁckward[}

opt'imizer.szepti -

runningloss += loss.data((]
batchium += 1

it (len (trainLoader.dataset))
1(trainLoader,

avgTrainhce = runninq_:urrect,.l’: &
avgTrainLoss = runningloss/float (ler
trainAce. append (avgTrainice)
trainLess.append (avgTrainLoss)

Which we have done, and then you find out what is your total loss. So, this loss is based
on the criterion evaluation of negative log likelihood. Then you do a nabla off your loss
with this backward, and then you have your optimizer dot step for the update part of the

function to run down.

(Refer Slide Time: 12:18)

~ Jupyter lecture60a @ Lo
File Edit View Insert Cell Kemnel Widgets Help Trusted # |Python3 Q
B + @A B 4 4+ HRn B C B cCcode J B3

loss.backward()
optimizer.step()
runningloss += loss.data[(0]
batchium += 1

avgTrainAcc = running correct/float (len(trainLoader.dataset))
avgTrainloss = runningLoss/float(len(trainloader.dataset))
trainAce.append (avgTrainAce)

trainLoss.append (avgTrainLoss)

net.train(False) # For testing

running_correct =

for data in testlecader:
inputs, labels = data

And then you have this whole thing running and finally, now you get your accuracy at
the end of one epoch during train. Now once that is done, and your network is updated.
What we do is, we put down our validation set into play or this is the test data which was

there over there.

(Refer Slide Time: 12:21)

~ Jupyter lecture60a @ Lo
File Edit View Insert Cell Kemel Widgets Help Trusted # |Python3 O
B + x @B 4 4+ HRn B C B cod A @

loss.backward()
optimizer.step()
runningloss += loss.data(0]
batchium += 1

avgTrainAcc = ‘:unninq_:arrect,.l’: at (len (trainLoader.dataset))

avgTrainloss = runningLoss/float (len(trainloader.dataset))
traindce.append (avgTrainice)
trainloss.append (avgTrainloss)

net.train(False) #
running_correct = [
for data in testLoader:

inputs, labels = data

So, you do the same thing you do a forward over there, and then find out what is your
loss using your criterion as well as you find out what is your. So, basically what is the

total number of correct predictions in order to get your accuracy.

(Refer Slide Time: 12:37)

" Jupyter lecture6a @ Lo
File Edit View Inset Cel Kemel Widgets Help Trusted # |Python3 O
B + @B 4+ MHRn B C P codo =
_r predicted = torch.max(outputs.data, 1)
running_correct += (predicted.cpu() == labels.data.cpu
else:

inputs, labels = Variable(inputs), Variable(lakels)
outputs = net(inputs)

_; predicted = torch.max (outputs.data, 1)
running_correct += (predicted == labels.data).sum()

loss = criterion(F.leg_softmax(outputs), labels)

runningless += loss.data[(0]

avgTestLoss = runningloss/float (len(testLoader.da
avgTestAcc = running_correct/fl len (testLoader
test@.cckappend[angestAcc]

testLoss.append (avgTestLoss)

And then you have those also computed and loaded down into your blank tensor. And

then comes your standard plotting part of it, and finally, your timing part of it.

(Refer Slide Time: 13:00)

~ Jupyter lecture60a @ Lo
File Edit View Inser Cell Kemnel Widgets Help Trusted # |Python3 O

B + @G0B 4+ HRin B C B coue ‘@

S ar— | ——————————7 {1 SIS] i s] ity
cher.py:69: UserWarning: Implicit dimension choice for log_softmax
has been deprecated. Change the call to include dim=X as an argume
nt.

Iteration: 1 /10; Training Less: 0.005651 ; Training Acec: B2.950
Iteration: 1 /10; Testing Loss: 0.026lé2 ; Testing Acc: 78.870
Time consumed: 17m 21s

Iteration: 2 [10; Training Loss: 0.002161 ; Training Acc: 96.483
Tteration: 2 /10; Testing Loss: 0.012066 ; Testing Acc: B0.807
Time censumed: 17m 53s

Iteration: 3 /10; Training Loss: 0.001358 ; Training Acc: 97.980
Iteration: 3 /10; Testing Loss: 0.008920 ; Testing Acc: 80.121
Time consumed: 17m 54s

Iteration: 4 /10; Training Loss: 0.000984 ; Training Acc:
Ttaratinne 4. /10: Taatina Laga: (1 ONTR + Teatina dres R

Save trained model

Now, if we keep on running this one for 10 Epochs as we have done over here.

(Refer Slide Time: 13:03)

~ Jupyter lecture60a @ Lo
File Edit View Insert Cell Kemel Widgets Help Trusted # |Python3 O

B+ @A B 4+ HRn B C W cCcode o | B

| Iteration: ¥ /1U; Training Loss: U.U0U38Y ; Training Acc: 99.377
Tteration: 9 /10; Testing Loss: 0.005456 ; Testing Acc: 80.379
Time consumed: 5m 45s
Iteration: 10 /10; Training Loss: 0.000347 ; Training Ace: 99.371
Iteration: 10 /10; Testing Loss: 0.005355 ; Testing Acc: 80.535
Time ceonsumed: 5m 42s
Training completed in 97m 37s

0025 = frain
= Iest

0020

0015
2

Save frained model

So, it does not take much of time basically so, poor epoch it is it is going to still take
down about 5 minutes 42 seconds and in total over all the 10 Epochs, it takes me about

97 minutes. So, that is really about one and a half hours of what it would be taking.

Now, keep in mind one part that these are very dense data a lot of images over there on

which you are training.

So, the time is not something viewed of one and a half hour. So, these are by now you
know that on practical datasets on bigger ones, one of the major challenges which you
would be facing done with any kind of a deep neural network is that it is going to take a

significant amount of time.

(Refer Slide Time: 13:43)

"~ Jupyter lecture60a @& [o ||

File Edit View Inset Cel Kemel Widgets Help Trusted Python 3 O

B + @B 4+ HRin B C W code o | @

0025 = rain
= Iest

0020
y 0015

3

0010

0.000

0 2 3 6 B
Epochs

100 {

— frain /____.____-——— ‘
= gt

So, if you look into our losses, you would see that your test loss or the validation loss is
still above the training loss. So, that is a good symbol that it is it is you have a good
amount of generalizability, but you are still not exactly overfitting over there, because

you do not have an influx point coming up over there.

(Refer Slide Time: 14:03)

~ Jupyter lecture60a @ Lo
File Edit View Insert Cell Kermel Widgets Help Trusted Python 3 O
B + x @B &+ HRin B C W code « &

100
= fain /—_._'__'____-———
— L

095

=
]
=

Accuracy

i
=
=

080 //._v__—_________

Now, if you look into your accuracy, your accuracy over there for a frame level

prediction is somewhere around 80 percent over there.

(Refer Slide Time: 14:17)

~ Jupyter lecture60a & [||
File Edt View Inset Cel Kemel Widgets Help Trusted Python 3 O
B+ @ B 4% HRn B C P cCoe B3
080 /‘V"————————
0 2 2 6 8
Epochs

Save trained model

torch.save (net.state_dict(), 'resnetl8Pre fcOnlySclass ucfl0l_l0ad:

Now, that is something to be very happy around, and in fact, your trained accuracy is
something which is going down close to 100 percent like, stay very happy over here

because this happiness is something which is quite important.

Now, the next part is and then this also gives you another important part that just a frame

level one is 80 percent accurates that is great. Now, on the next part what we do is, we

need to use this network and the weights which are trained over here for another purpose
as well, and that is when we try to find out the features for analystium. So, for that what
we are trying to do is, we just saved on just the weights in terms of dictionary set. You do
not need to save your derivatives or gradients or anything over there, it is just the pure

weights over there which need to be saved.

(Refer Slide Time: 14:59)

~ Jupyter lecture60b @ Lo
File Edit View Insert Cell Kermel Widgets Help Trusted # |Python3 O
B + x @B &+ HRin B C W code o &

60b: Feature extraction using CNN

import torch

import torch.nn as nn

from tor ograd import Variable

from torchvision import models, transforms,datasets

from PIL import Image
import os

import numpy as np
import pickle

Now, at this point I would move down to the next series of the one which is 60 b. And
here what we do is essentially use this earlier pre-trained CNN in order to extract out

features which represent one individual frame over there.

(Refer Slide Time: 15:18)

~ Jupyter lecture60b @ o
File Edit View Insert Cell Kermel Widgets Help Trusted # |Python3 O
+ ¥ @B 4 ¥+ HRin B C W cCote J | @

from PIL import Image
import os

import numpy as np
import pickle

use gpu = torch.cuda.is available()

with cpen('trainList Sclass.pckl';'rb') as f:
trainlist = pickle.load(f)
with open('testlList 5class.pckl','rh') as f:

testlist = pickl.e.loa:i[fl

In [4]: classes = []
for item in trainList:

So, the first part is your customary loading of your header files over there, and all the

header libraries, then to check down for your GPU.

(Refer Slide Time: 15:22)

~ Jupyter lecture60b @ Lo
File Edit View Insert Cell Kemnel Widgets Help Trusted # |Python3 Q
B + A B 4+ HRn B C B cCcode o @3

In [2]: # Check availability of GPU
use_gpu = torch.cuda.is available()

with dpen('trainList Sclass.pckl';'rb') as f:
trainlist = pickle.load(f)

with op

('testList 5class.pckl','rb') as f:

ist = pickle.load(f)

In [4]: classes = []
for item in trainList:
¢ = item.split(' ') [1]
if c not in classes:
classes.append(c)
print(classes)

Ml uFvaMabaun! . "3mmlvlingtrisk!. 'Rr~hpru!. "BabiwCrawlid

And then finally, what you do is so, here what we have is that in the if you remember
from your lecture 59, then there are two different pickle files which we had stored on and
this at the list of all the videos and the frames frame names, which were present in your

training data set or was present in your testing data set.

And this is important because now what we are going to essentially do is for every single
over here; we get down a tensor representation. It is no more an image file, but a single

tensor corresponding to that particular image over there.

(Refer Slide Time: 15:52)

~ Jupyter lecture60b @ Lo
File Edit View Insert Cell Kemel Widgets Help Trusted # |Python3 Q
+ % @B 4 ¥ HRn B C W cote J @3

WiTn Cpen| ' Tralnulst JCLASS.PCKL*; 'ID') as It
trainList = pickle.load(f)
('testList ’:-clals:;.pck'.','rb'j as f:

testList = pickle.load(f)

with op

In [4): classes = []
for item'in trainList:
c = item.split(' ') [1]
if ¢ net in classes:
classes.append(c)
print(classes)

['ApplyEyeMakeup', 'ApplyLipstick', 'Archery', 'BabyCrawling', 'Bal
anceBeam']

Initialize network and load trained weights

So, we start by loading these ones and then look into what is the classes present over
there. So, these were the 5 classes which across which we were classifying in the earlier

case. So, well you got down somewhere about 88 percent accuracy.

(Refer Slide Time: 16:05)

~ Jupyter lecture60b @ Lo
File Edit View Insert Cell Kemnel Widgets Help Trusted # |Python3 Q

B + @B 4+ HRin B C W code o | @

HE AL (Laanaes)

['ApplyEyeMakeup', 'ApplyLipstick', 'Archery', 'BabyCrawling',6 'Bal
anceBeam']

Initialize network and load trained weights

In [5]: net = models.resnetlB()
net.fe = nn.Linear(512,5)

net,load state dict(torch.load('resnetl8Pre fcOnlySclass ucfl01 10:

model = nn.Sequéntialt*i ist :né:.children(:] [:=1])
if use gpu:
model = model.cuda()

Now, the next part is to create your network over here. So, what we are essentially going
to do is, you load down so, we are still going to use the resnet 18 over there, ok. Now, on
the resnet 18, what we are going to do is, you need to load your dictionary states over
there. And so, what these dictionary states are essentially is all the weights which were

there from the previously stored one.

(Refer Slide Time: 16:32)

~ Jupyter lecture60b @ Lo
File Edit View Insert Cel Kernel Widgets Help Trusted # |Python3 O
B + x @B &+ HRin B C W code L
TR T .
['ApplyEyeMakeup', 'ApplyLipstick', 'Archery', 'BabyCrawling', 'Bal
anceBeam']

Initialize network and load trained weights

18()
2¢2)

(torch.load('resnet1B8Pre fcOnlySclass ucfl0l l0adam le-4 bl28.pt'))
al (*1ist (net.children())[:=1])

ida ()

So, this was the file name which we had used for storing down all our weights, in the

earlier case and I am I am just going to reload it over here.

Now, once I have that one, what I next do is on my model over here. I will be deleting
this last layer. So, my last layer is basically this 512 to 5 neurons over there, and I am
just going to delete that part over there so, this thing gets deleted. Now, once that is
deleted.

So, I am just left with given an input image over there I am going to get a 512 cross one
tensor straightforward. So, every image in terms of just a simple tensor of 512 elements

present over there.

(Refer Slide Time: 17:13)

~ Jupyter lecture60b @ o
File Edit View Insert Cell Kemel Widgets Help Trusted # |Python3 O
B+ % @B 4% NRn B C W coo | @
Feature extraction
In [6] # PIL image to tensor transformation
data_transforms = transforms.Compose (|

transforms.Resize (258),

t:ansfarms;[‘enter[‘rop[.Z.'-':},

transforms.ToTensor ()

1)

In [1): framePath = 'frames/'
for item in trainList:
cName = item.split{' ")[1]
srcPath = framePath+cName+'/'+item
fNames = os.listdir(srcPath)

Next if we have a GPU we just convert this model to cuda. So, that it is it is available
over there, and now comes our next part of it which is for feature extraction or

representing each frame in terms of just this simple one d tensor.

(Refer Slide Time: 17:24)

~ Jupyter lecture60b @ Lo
File Edit View Insert Cell Kernel Widgets Help Trusted # |Python3 O
B + @B 4 ¥ HRn B C B Ccode @

In [6]:

data_transforms = transforms.Compose [
transforms.Resize (258),
t:ansfarms;[‘enter[‘rop[ZZ.‘.-':},
transforms.ToTensor ()

il

In [1): framePath = 'frames/'

for item in trainList:
cName = item.split('_")[1]
srcPath = framePath+cName+'/'+item
fNames = os.listdir(srcPath)

fTemplate = fNames[0].split(' ')

fCount = len(fNames)

s (fCount) &

£ileName = fTemplate[0]+' '+fTemplate[l]+' '+f]

for fNum in ra

So, the data transform is still going to remain the same, that you resize it to 5, 256 and

then crop the center part for 224 cross 224 sized image over there.

(Refer Slide Time: 17:34)

: Jupyter lecture60b

A

Logout
File Edit View Insert Cell Kermel Widgets Help Trusted # |Python3 O
B+ x @B 4+ HRn B C B code | | @
I}
In [T) framePath = 'frames/'

for item in trainList:
cName = item.split(' ')[1]
srcPath = framePath+cName+'/'+item
fNames = os.listdir(srcPath)

fTemplate = fNames[0].split(' ')

fCount = len(fNames)
ange (£Count) :

fileName = fTemplate[0]+' '+fTemplate[l]+' '+fTemplate([2]+

if os.path.exists(srcPath+'/'+fileName):

for fNum in

Loading lmage

img = Image.open(srcPath+'/'+fileName)

imgTensor = data transforms(img).unsqueeze

And then what we do is here is, where you are going to convert down each and every

frame onto a tensor.

Now, it is independent of whether it is present on my training data set or on my testing

data set, [am going to have it for all of them because that is the input which goes down

onto my LSTM over there. So, what we essentially do is we find out all the frames

present within this frames folder over there.

(Refer Slide Time: 17:54)

~ Jupyter lecture60b @ Lo
File Edit View Insert Cell Kemnel Widgets Help Trusted # |Python3 Q
+ % @B 4 ¥ HRn B C W Cote @3

for fNum in rang:

s (fCount) :
fileName = fTemplate([0]+' '+fTemplate[l]+' '+fTemplate([2]+
if os.path.exists(srcPath+'/'+fileName):

img = Image.open(srcPath+'/'+fileName)
imgTensor = data_transforms(img).unsqueeze(0)

if use_gpu:

inp = Variable(imgTensor.cuda())
else:

inp = Variable (imgTensor)
¥ Feed-Fforward through model+st

if fNum == 0:

out = model (inp)

out = out.view{out.size()[0],-1).data.
alsa:

outl = model (inp)

outl = outl.view(outl.size() [0],-1] .da]

And then for each of them this image is opened up and then you have the transformation

applied over there.

Now, what you would be doing is, you do a forward pass over my model or the straight
pass over this network over there, now keeping one thing in mind that whatever comes
out on the output over there, again needs to be recasted into one single tensor over there.
And then this is this view operation which sets up my last part of the tensor coming out

of it.

(Refer Slide Time: 18:26)

" Jupyter lecture60b P Lo
File Edit View Inset Cel Kemel Widgets Help Trusted # |Python3 O
B + @ B 4% HRn B C P Coe | 2
if fHum == 0:
out = medel (inp)
out = out.view{out.size()[0],-1).data.cpul
else:

cutl = model (inp)
outl = outl.view(outl.size() [0],-1).data.cpu()
out = teorch.cat((out,outl),)
alse:
rint (fileName+

4

feRtsavePath = 'ucfl01_resnet

if not os.path.exists(featSavePath):
os.makedirs (featSavePath

torch.save (out,08.path.join(featSavePath, itemt'.pt

/train/'+clame #

Now, once we have all of this available, then I need to save it out. And so, this is part
where I save my tensor in terms of a dot pt file. So, each image now stored in terms of a

tensor in terms of a pytorch tensor over there.

Now, once this is done for my training one, I will be doing the same thing for my test list

as well.

(Refer Slide Time: 18:45)

~ Jupyter lecture60b @ Lo
File Edit View Insert Cell Kemel Widgets Help Trusted # |Python3 O
B+ @B 4% HRn B C W oo) [

In [8]: framePath = 'frames/'

for item in testList:
cName = item.split(' ')[1]
srcPath = framePath+cName+'/'+item
fiames = os.llistdirtsrc?ar_h?
fTemplate = fNames[0].split{' ')
fCount = len(fMames)
for fNum in range(fCount):
filelame = fTemplate[0]+' '+fTemplate[l]+' '+fTemplate([2]+
if os.path.exists(srcPatht'/'+fileName):
img = Image.open(srcPath+'/'+fileNane)
imgTensor = data_transforms(img).unsqueeze|
inp = Variable (imgTensor.cuda())
if fNum ==

out = model (inp)
rs -4 i Arnl das

So, this is where I load it down from my test list which I had loaded on my pickle files

over here. So, this was my test list which is over here.

(Refer Slide Time: 19:02)

~ Jupyter lecture60b @ Lo
File Edit View Insert Cell Kemnel Widgets Help Trusted # |Python3 Q
+ % @B 4 ¥ HRn B C W cCote @

out = model (inp)
out = out.view{out.size() [0],-1).data.cpu()

else:
outl = model (inp)
outl = outl.view(outl.size()[0],-1).data.cpu()
out = torch.cat((out,outl),0)
else:

print (fileName+ ' missing!')

featSavePath = 'ucfl0] resnetl8Feat/test/'+clame

if not os.path.exists(featSavePath):
os.makedirs(featSavePath)

torch. save (out, 0s.path. join(featSavePath, item+’.pt

Now, based on that [am going to again run down everything, and then also stored them
out. And now this gets stored in terms of a different directory called as test. So, I have
each frame extracted and represented in terms of it is 512 cross 1 1 d tensor. Now, this is
the second part which gets over. And then we get into the last and final part which is

where you are going to train your LSTM, ok.

(Refer Slide Time: 19:27)

~ Jupyter lecture60c @ o
File Edit View Insert Cell Kermel Widgets Help Trusted Python 3 O
B+ x @B 4+ WNRin B C P Makdonn | B

Dataset: UCF101

In [1]: $matplotlib inline
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.optim as optim
from torch.autograd impert Variable
import matplotlib.pyplot as plt

import os

import numpy as np

from random import shuffle
import copy

import time

Now, within this part, what comes down is we would be for the first part is just your
header over there. So, that is straightforward we are not going to make any change over

there.

(Refer Slide Time: 19:36)

~ Jupyter lecture60c @ Lo
File Edit View Insert Cell Kemnel Widgets Help Trusted # |Python3 O
+ % @B 4 ¥ HRn B C W cCote J @

A UL MM UYL AN fu e

import matplotlib.pyplot as plt

import os

import numpy as np

from random import shuffle
import copy

import time

use gpu = torch.cuda.is available()

trainPath = '
testPath = '

Now, and you again check out for your GPU, because you are switching away from one
python notebook on to the other python notebook session you need to reinvoke and
check out all the variables once again as well. And then you again load down your train

path and test path, this is to get down what are you where which all images are there in

your training data set and which all images are part of your testing data set over there.

And then you basically create out list for each of them in order to facilitate your loader.

(Refer Slide Time: 20:02)

~ Jupyter lecture60c @ Lo
File Edit View Inset Cel Kemel Widgets Help Trusted # |Python3 O
B + x @B 4 % HRn B C P cCoe | B

classes = os,listdir(trainPath)
classes,sort()
labels = np.arange(5)
trainshufflist = []
labelshuffList = []
for ¢ in range(5):
files = os.listdir(trainPath+classes(c])
for f in files:
trainShuffList.append(classes|[c]+'/"+f)
labelShuffList.append(float (labels[c]))

trainlist = list(zip(trainShufflList, labelShufflList))
shuffle (trainList)
trainshufflist, labelShuffList = zip(*trainList)

Now, one important point which we do over here is that, we need because you are not
making use of the data loader any further. Data loader is something which can work only
on images. So, here I have dot pt files or pi touch files with all of these tensors present.
So, I do not have an option of making use of data loader. So, what I am essentially trying

to do is that within each run over there I am trying to shuffle up these indices.

So, in order to shuffle these lists over there what I will have to do is, I have a frame a list
of all the frames for one particular example, and corresponding to that I have a class
label given now over there. I need to have this pair and shuftle of this pair. And for that
reason, the simple way of doing it is, just zip these pair into a zip file, then you can
shuffle up this list over here, and then again unzip this folder in order to create get this

shuffled up lists over there.

(Refer Slide Time: 21:02)

~ Jupyter lecture60c @ Lo
File Edit View Insert Cell Kermel Widgets Help Trusted # |Python3 O
+ ¥ A B 4 ¥ HRn B C W cCode J | @

.................. i b (g b f b

labelShuffList.append(float (labels([c]))

trainlist = list(zip(trainShufflist, labelShufflist))
shuffle(trainList)
trainShuffList, labelShuffList = zip(*trainList)

In [5]: # Creating test
testlist = []
testlabellist = []
for ¢ in range(5):

files = os.listdir(testPath+classes(c])

for f in files:
testList.append(classes[c]+'/'+f)
testLabellist.append (float (labels(c]))

&

Nafina nahunrlk architartura

So now once that part is done, then we are going to load down all of these features over

there.

(Refer Slide Time: 21:10)

~ Jupyter lecture60c @ Lo
File — Edit View Insert Cell Kemel Widgets Help Trusted # |Python3 Q
+ ¥ @B 4 ¥ HRn B C W Code o @

Define network architecture

In [6]: lass net LSTM(nn.Module):
def _init_ (self, input_sz, hidden_sz, nlayers, nClasses):
super (net_LSTM, self). init ()
self.lstm = nn.LSTM(input_sz, hidden sz, nlayers, batch firsi
self.fc = nn.Linear (hidden_sz, nClasses)

def forward(self, x):
out, _ = self.lstm(x)

out = self.fe(out(:, =1, :])
return out

Now, once it is done we start defining our LSTM. Now the LSTM which we have

defined over here is using the model called as nn dot LSTM.

(Refer Slide Time: 21:20)

_ Jupyter lecture60c @ Lo
File Edit View Insert Cell Kermel Widgets Help Trusted # |Python3 O

B + x @B 4+ HRn B C W coe | B

Define network architecture

t_LSTM(nn.Module) :

init (self, input_sz, hidden sz, nlayers, nClasses):

super (net_LSTM, self). ipit ()

self.lstm = nn.LSTM(input_sz, hidden sz, nlayers, batch first=True)
self.fc = nn.Linear(hidden sz, nClasses)

forward (self, x):
sut, _ = self.lstm(z)

sut = self.fe(out[:, -1, :])
return ocut

And within that what goes in is basically your input size; input size is something which
is mapped from the input tensor size. So, for each time frame over there, I have a 512

cross one tensor, ok.

So, if I have say 20 times stamps over there it becomes 20 cross 512 for me. So, this
input size is what goes down over there, next you give down what is the size of the
hidden layer. And for our purpose over here, you basically have all the hidden layers with

the same number of neurons given down; we do not make any change within this.

Now, you can also give this hidden size as a tensor separate tensor where you can specify
what is the total number of neurons across each of them. Now, remember one thing that,
there are no convolutional connections or anything they are all fully connected layers.
So, I did you do not need to put any further parameters, you can just specify what is the

total number of neurons per hidden layer.

Then what is the total number of layers over here? And finally, this rest of the part
argument over there which is batch first is equal to true is to set this ketl over here,
because if you remember on our video tensors what we were doing is, you had the batch
number, then you had channel number, then you had your time over there, then you had

your x and then your y. So, this is how it was going down.

Now, here since we have transform all each frame over there onto a tensor, where what
you have is you have your batch number, then you have your timestamp, and then you
have your tensor representation. So, if I have say 20 frames over there, and a batch size
of 100, and then I have a 100 cross 20, cross 512; because each frame is now represented

in terms of a 512 cross one tensor over there.

So, that goes over there, and your final part is just a classification over there, which
connects down hidden neurons; the total number of hidden neurons on to a class. So, that

is because each new each hidden layer has the same number of hidden neurons.

So, we are not making any change over there, if you had passed down basically a tensor
over here, defining each different layer in a different way, then you have to have this
hidden size as the last hidden layers number of neurons over there. And that maps down

to my total number of classes which for me is 5, ok.

Then my forward pass for the LSTM is pretty simple that I whatever is my input, that is
what maps down to my output, now remember, I think that this LSTM module inside has
all of the rest of the operations for get retain get implemented over there, and how it does
time unwrapping and then training within it. So, we do not need to specify each of them

we just need to specify the atomic structure for an LSTM block over here.

Now, once you have your output then what you can do is that we just need to take down
the state of the last time stamp. Because essentially, if [have 20 frames over there, then I
am going to get down a prediction for each of these frames coming out, but I need to get
it only for the twentieth frame, and not for 19, 18, 16, 17 up to my first frame. That is

that is not necessary for my work over there.

I just want the terminal frames classification coming out so, that is what we are
essentially doing over here, that your output for a bunch over here which is for a tensor a
times stamp tensor is what is going to give me just one single classification output for

this whole time frame volume.

(Refer Slide Time: 24:38)

~ Jupyter lecture60c @ o
File Edit View Insert Cell Kemel Widgets Help Trusted Python 3 O
B + x @G0B A+ HRn B C B cop « &
Define train routine
In [T): def train(net, inputs, labels, optimizer, criterion):
net.train(True)
if use_gpu:
inputs, labels = Variable(inputs).cuda(), Variable(labels)
else:
inputs, labels = Variable(inputs), Variable (labels)
Feed-forward
outputs = net(inputs)
_+ predicted = torch.max (cutputs.data, 1)
optimizer.zero grad()
loss - criterion(F.log_softmax(cutputs), labels)

Now, then we start our training routine over here. So, within your training routine what
you do is, one is just check down for your available GPU one not, and then typecast your

inputs and labels over there.

(Refer Slide Time: 24:50)

" Jupyter lecture0c @ g
File Edit View Insert Cell Kemel Widgets Help Trusted # |Python3 Q
B + @A B 4 4+ MHRn B C B Ccode o | @
net.train (True)
if use gpu:
inputs, labels = Variable(inputs).cuda(), Variable(labels)
else:

inputs, labels = Variable(inputs), Variable (labels)
;utputs = A.;;‘t;inputal
_» predicted = torch.max (outputs.data, 1)
;ptlmlze:zero_qradtl .
l;o;s"}——. Iclrliéé;io;..(ll‘:.iog_softmaxtoutpuzs], labels)

loss.backward()
Ur jate the network parameter
optimizer.step()
if use gpu:
correct = (predicted.cpu() == labels.data.cpu(

Now, remember your inputs are basically your inputs of that tensor over there, and
fetched out in terms of a batch. And label is for each single video block within that black
batch what is the label for it, ok.

Next, [do a feed forward get my output over there, and find out what is my prediction
coming out of it. Now, once that is done, next is 0 down your gradient. So, that we can
start our optimizer, find out your loss using your criterion function, now here also it is a
classification problem which we are solving. So, we are going to stick down to the same

criteria of a negative log likelithood coming in to over here.

(Refer Slide Time: 25:28)

— Jupyter lecture60c @ Lo
File Edit View Insert Cell Kermel Widgets Help Trusted # |Python3 O

B + x @B &+ HRin B C W code + | @

outputs = net (inputs)
_» predicted = torch.max (outputs.data, 1)

optimizer.zero grad()
loss = criterion(F.log_softmax(cutputs), labels)
loss.backward()

cptimizer.step()

if use_gpu:

correct = (predicted.cpu() == labels.data.cpu(}).sum()
aelse:

correct = (predicted == labels.data).sum()
return net, loss.data[0], correct

And then we do a derivative of the criterion function on nabla of the cost function. Then
you have your optimizer dot step or the update routine written down over there. Then
you are just going to find out whether how many are correctly classified and what is the

accuracy which comes over there.

(Refer Slide Time: 25:48)

~ Jupyter lecture60c @ Lo
File Edit View Insert Cell Kemel Widgets Help Trusted # |Python3 O
B + x @B 4+ MHRn B C B code o | @
!

Define test routine

n [9): def test(net, inputs, labels, criterion):
net.train (False)
if use_gpu:
inputs, labels = Variable(inputs).cuda(), Variable(labels)
alsa:
inputs, labels = Variable(inputs), Variable (labels)
outputs = net (inputs)
_+ predicted = torch.max (outputs.data, 1)

loss = criteri:}n[?\lcq_ssftmaxtoutpu‘_s], labels)
if use gpu:
correct = (predicted.cpu() == labels.data.cpu(
glge: ¥

Now, this is what goes down within your training part over there, and then you have your
test routine written down in order to do the testing part over there. So, typically in the

earlier case we were writing this together, but you are just splitting it out ok.

(Refer Slide Time: 25:55)

~ Jupyter lectures0c @ Lo
File Edit View Inset Cel Kemel Widgets Help Trusted # |Python3 O
B + x @A B 4+ HRn B C B cCcode L=
Initialize network
fet = nat LSTM(512, 8, 2, 8) # Input featurs length->. F
if use gpu:
net = net.cuda()
Define loss function and optimizer
criterion = nn.NLLLoss() # Negat

cptimizer = optim.Adam(net.parameters(), lr=le-4) # A

Train network

Next you can initialize your network. So, what we do over here is my input feature
dimension is 512. So, that is my input size which goes over here. I have every hidden
layer which has just 8 8 neurons over there. I have two such hidden layers over there, and

my total number of outputs is 5. So, this is what I do in order to initialize my LSTM, and

which is from my model which was defined in the earlier case, ok. Then I have my
optimizer and the criterion both of them defined over there, and then I start with my

Epochs ok.

(Refer Slide Time: 26:24)

~ Jupyter lecture60c P Lo
File Edit View Insert Ce Kernel Widgets Help Trusted # |Python3d O
B + @A B 4+ MHRn B C W cCcode | 2
Train network

epochs =

bSize =

L =3

bCount = len(trainShuffList)//bSize

lastBatch = len(trainshuffList)ibsSize

test_bCount = len(testList)//bSize

tes:_'_astEEt-:h = len(testList)¥bSize #

Now, I have my I am going to train this 1000 Epochs, and I have a batch size of 32
which I am going to take down over there. Now, while I am taking a batch size of 32 I
am also taking a time length of 32 which means that 32 frames taken down together, and

it is going to give me one single output for classification.

So, following that what we do over here is one thing which we need to look is that my
total number of frames which are present over there may not necessarily be an integral
multiple of 32. So, there will be some frames which are left out if I am trying to do a
batch fetch. So, what this pad does is that we find out what is the constitution of the last
batch over there and if needed then. So, that sets just a modulo operation which you need

to do to find out, what is a constituent of the last batch.

Now, once you get down this last batch constitution. So, that may be something lesser
than 32 on the batch size over there. So, that also needs to be processed otherwise you
are not using all of the data you are just scheming out some of this data over there. So,
this last batch part for the train and test both of them are written now. So, that you have

access to this remaining residual data as well ok.

(Refer Slide Time: 27:33)

Now, we start across all of our Epochs, and then set down our losses to 0, and then it

starts up ok.

: Jupyter lecture60c @ o
File Edit View Inset Cel Kemel Widgets Help Trusted # |Python3 O
B + x A B 4+ WRin B C P cote L

testloss = [

testice = [)

start = time.time()

for epochNim in rang

trainlist = list {:-:_t‘.{t.rainShuffLiét, labelShufflist))
shuffle (trainlist)
trainShuffList, labelShufflist = zip(*trainlist)

trainRunLess = 0.0
testRunloss =
trainRunCorr =

testRunCorr = 0

epochStart = time.time()

(Refer Slide Time: 27:38)

~ Jupyter lecture60c @ Lo
File Edit View Insert Cell Kernel Widgets Help Trusted # |Python3 O
+ ¥ @B 4 ¥ HRn B C W Code @

epochStart = time.time()

idx = 0
for bNum in range (bCount):
first = True

for dium in range(idx,idx+bSize):

if first:
loadData = torch.load(trainPath+trainShuffList[dNu
sz = loadData,size(0)
idxl = torch.from_numpy(np.arange (0, (
batchData = torch.index_select (loadDa
batchLabel = torch.Tensor((labelShuff
first = False

elsa:

Now, once it starts you have your data loader coming into play and this was because we

had modified and stored it down in terms of our pickle files, which could not be load it

down, sorry not pickle files, but pit wash files which could not be loaded. So, they were

just pit wash tensor over there.

(Refer Slide Time: 27:42)

~ Jupyter lecture60c @ o
File Edit View Insert Cell Kemel Widgets Help Trusted # |Python3 O
+ ¥ A B 4 ¥ HRn B C W code J | @

for bNum in range (bCount):
first = True

for dium in range(idx,idx+bSize):

if first:
loadData = torch.load(trainPath+trainShuffList[dNu
sz = loadData,size(0)
idxl = 'r_or:h.Erom_nurr.py(np‘aranget 1, (s2//L)*L, s2//
batchData = torch.index select (loadData,dim=0,inde
batchLabel = torch.Tensor(([labelShufflList [dNum]]).
first = False

alsa:
loadData = torch.lead(trainPath+trainShuffList[dNu
sz = loadData.size(0)
idxl = torch.from_numpy(np.arange (0, (
tempData = torch.index select (loadDat{
batchData = torch.cat((batchData, temp]

Now, what I do from there is, once I load it down I need to convert and get back my

labels and my tensors appropriately represented; so, that is what is said down over here.

(Refer Slide Time: 28:10)

~ Jupyter lecture60c @ Lo
File Edit View Insert Cell Kernel Widgets Help Trusted # |Python3 Q
B + @B 4 ¥ MHRn B C B cCcode B3
first = False
elsa:

loadData = torch.lead(trainPath+trainShuffList[dNu
sz = loadData.size(0)

idxl = torch.from_numpy(np.arange(0, (sz//L)*L,sz//
tempData = torch.index_select (loadData, dim=0,index
batchData = torch.cat((batchData,tempData), dim=0)
batchlabel = torch.cat((batchLabel,torch.Tensor ([1

net, tr loss, tr corr = train(net, batchData, batchlabel,
trainRunlLoss += tr_loss ;
trainRunCorr += tr corr
idx += bSize

if lastBatch != (:
first = True

Now, next part is to get into my training routine over there, and find out what is my loss
is coming down. So, this train routine is something which we have written down in the
earlier case over here, ok. So, this is my train routine written down for my network,

when [am training it out and this is my test routine which has been written.

(Refer Slide Time: 28:33)

~ Jupyter lecture60c @ o
File Edit View Insert Cell Kemel Widgets Help Trusted # |Python3 O
B + x @B 4+ HRn B C B Ccode | | &2

trainRunLoss += tr_loss
trainRunCorr += tr corr
idx += bSize

if lastBatch != (:
first = True
for difum in range(idx,idx+lastBatch):
if first:
loadData = torch.load({trainPath+trainShuffList[dNu
sz = loadData.size (0}
idxl = torch.from_numpy(np.arange (0, (sz//L)*L,sz//
batchData'= torch.index select (loadData,dim=0, inde
batchLabel = torch.Tensor((labelShuff
first = False
elsa:
loadData = torch.load(trainPath+train

3 in i

Now, in the earlier exercises on CNNs and stuff what you were looking down is that we
used to freeze a fuse everything together and right, but this is also an option, because I

am can now allow myself to do just a pure simple function call over there.

Now, once you have that thing written down, you get down your training losses coming

down over there, then you have your train accuracies calculated as well.

(Refer Slide Time: 28:40)

~ Jupyter lecture60c @ Lo
File Edit View Insert Cell Kemel Widgets Help Trusted # |Python3 O
+ ¥ @A B 4 ¥+ HRin B C W code @

loadData = torch.load(trainPath+trainShuffList[dNu
sz = loadData,.size(0)

idyl = tor:h.fmm_nurnpy[np‘a:anget), (sz//L)*L, 82/}
tempData = torch.index select(loadData,dim=0, index
batchData = torch.cat((batchData,tempData), dim=0)
batchLabel = torch.cat((batchLabel, torch.Tensor ([l

Training network on last batch

net, tr less, tr_corr = train(net, batchData, batchLabel,
trainRunloss += tr_loss

trainRunCorr += tr_corr

Average Cralning los85 and accl
avgTrainLoss = trainRunLoss/flos
trainloss.append (avgTrainLoss)
avgTrainAcc = trainRunCorr/float (len(trainShuffLi

trainshuffL.

trainfcc.append (avgTrainAce)

(Refer Slide Time: 28:48)

~ Jupyter lecture60c @ Lo
File Edit WView Insert Cell Kemel Widgets Help Trusted # |Python3 O
+ ¥ @A B 4 ¥+ HRin B C W cCode | @

AVgIraInAce = LralnKunLory/r10at (Llen(trainsnuriList))
trainAcc.append (avgTrainAcc)

idx = ;
for bHum in range(test_bCount):
first = True
for dilum in range(idx, ldx+bSize):

if first:
loadData = torch.load(testPath+testList [dNum])
3z = loadData.size(0)
idxl = torch.from_numpy(np.arange (0, (*
batchData = torch,index_selecttloadﬁa
batchlabel = torch.Tensor([testLabell.
first = False

else:

Now, once that update and everything happens down during your training, then you have
your test and validation part being taken care of over here. And then this is for your last

batch which you need to take care of.

(Refer Slide Time: 29:00)

~ Jupyter lecture60c @ Lo
File Edit View Insert Cell Kemnel Widgets Help Trusted # |Python3 O
+ % @B 4 ¥ HRn B C W Code =

batchlLabel = :orch.catitbacch:abel.t;Jrch.Tensor([c

ts loss, ts corr = test(net, batchData, batchlabel, criter
testRunloss += ts_loss
testRunCorr += tr_corr

avgTestLoss = testRunLoss/float(len(testList))
testloss.append (avgTestLoss)
avgTesthcc = testRunCorr/float (len(testlist))

testAcc.append (avgTesthAcc)

Plotting training loss vs Ep

figl = plt.fiqure(l)

plt.plot(range (epochMum#l) , trainLoss, 'r-', label='
Pt Tabalsie

ple nlatiranss lana~hNimdel] el

So, once that is so, once you have everything running over all the regular number of
batches so, the last residual number of things is what gets taken care of in the last patch

present over here.

(Refer Slide Time: 29:19)

— Jupyter lecture60c
File Edit View Insert Cell Kemel Widgets Help
B + x @B 4+ HRin B C W code « | &

del sys.path[0]

Iteration: 1 /1000; Training Loss:
Iteration: 1 /1000; Testing Loss:
Time consumed: Om 1lls

(=1
[=1

Iteration: 2 /1000; Training Loss:
Tteration: 2 /1000; Testing Loss: 0.0
Time censumed: Om Os

Iteration: 3 /1000; Training Loss:

[=3

Time censumed: Om Os
Iteration: 4 /1000; Training Loss:

=1

fhumej’deepsipfanacnndaﬂlib!pythunl6fsite-packages,."ipykernel_launc
her.py:10: UserWarning: Implicit dimension choice for log softmax h
as been deprecated. Change the call to include dim=X as an arqument

Remove the CWD from sys.path while we load stuff.

053004 ; Trai
063563 ; Testi

0.052863 ; Trai
63310 ; Testi

052718 ; Trai
Iteration: 3 [1000; Testing Less: 0.063152 ; Testi

052530 ; Trai

ﬁ Logout

Trusted Python 3 O

ning Acec: 18.902
ng Acc: 16,541

ning Acc: 19.308
ng Acc: 24.812

ning Ac
ng Acc:

ning Ac

Now, having done that, now you can get poor epoch wise what is your average accuracy

in and coming out of it, and then you can decide on plotting it out. So, this is straight

forward what we do over here, and then we said this one running. If you see this one

running this it initially starts over here with the training loss of about 0.05, and an

accuracy of 18 percent, and a test accuracy of about 16 percent and takes about 11

seconds to finish off.

So, one thing for sure is that while your CNNs are taking much larger to finish off

because it was a residual network and a dense connection over there. Here you just have

simple tensors which come down you do not have the whole image going into it, and a

fully connected neural network for your LSTM modules over there. So, they the number

of parameters is much lesser, so, it takes much faster to converge onto them.

But nonetheless the static accuracy is and a much smaller zI over there.

(Refer Slide Time: 30:00)

~ Jupyter lecture60c @ Lo
File Edit View Insert Cell Kermel Widgets Help Trusted Python 3 O
+ ¥ @B 4 ¥ HRin B C W cCote J | @

Remove the CWD from sys.path while we load stuff.

Iteration: 1 /1000; Training Loss: 0.053004 ; Training Acc: 18.902
Iteration: 1 f1000; Testing Loss: 0.063563 ; Testing Acc: 16,541
Time consumed: (m lls

Iteration: 2 [1000; Training Loss: 0.052863 ; Training Acc: 19,309
Iteration: 2 /1000; Testing Less: 0.063310 ; Testing Ace: 24.812
Time consumed: Om Os

Iteration: 3 /1000; Training Loss: 0,052718 ; Training Acc: 22,967
Iteration: 3 /1000; Testing Less: 0.063152 ; Testing Acc: 21.805
Time censumed: Om Os

Iteration: 4 /1000; Training Loss: 0.052530 ; Training Acc: 23.577
Iteration: 4 f1000; Testing Loss: 0.063043 ; Testing Acc: 23.308
Time consumed: Om Os

Iteration: 5 [1000; Training Loss: 0.052408 ; Training Rcc: 28,862
Iteration: 5 /1000; Testing Loss: 0.062886 ; Testing Ace: 28.571
Time consumed: Om 1ls

A] x A _AEAA m

And if you look over here so, it shows down at 0 second. So, technically it is not like 0,
but it is a much lesser value. In fact, the finish off in a few milliseconds and you see this

accuracy starting down about 11 percent and then it keeps on going down.

Now, if we go till the end of this routine, then we would be select me yeah, ok. So, just
come down yeah so, what 800, 900 and then you are close to a 1000 Epochs over here
ok. So, the total time it took for me to converge over 1000 Epochs is just merely 8

minutes over there.

(Refer Slide Time: 30:48)

~ Jupyter lecture60c A Lo
File Edit View Insert Cell Kemel Widgets Help Trusted Python 3 O
B + x @A B 4 ¢ HRin B C W cote L

3l

Time consumed: Om Os

Training completed in mls

00651 Tain

= (pgt
0.060
il L1

Now, let us look into the accuracy graphs over there.

(Refer Slide Time: 30:54)

“ Jupyter lecture6Oc P Lo
File Edit View Inset Cel Kemel Widgets Help Trusted Python 3 O
B + @B 4 4+ HRn B C P code L=
0040 w ‘
0 % 40 &0 @0 100
Epochs

050 = bain

— st

045
040

=
703

Hon
025

020

It starts with about 25 percent of an accuracy, and then here by the end of 1000 Epochs,
my test accuracy somewhere barely about 45 percent. My train accuracy is about 50
percent; now that is not an impressive figure given the fact that by CNN already had an

88 percent of test case accuracy over there.

But nonetheless you need to keep another thing in mind, that is the this whole network
over here has not yet actually converged in any way it still shows a increasing trained in
terms of it is accuracy as well as a falling trained in terms of it is loss which is coming

down over here.

And that keeps in mind one thing that we need to train it for more and more number of
Epochs as well. So, you cannot keep on doing this for beyond 1000 Epochs and typically
I would be suggesting about going down to close to 10000 or even more number of

Epochs in order to see your saturation coming down.

So, that is where we come to an end for understanding LSTM for video analysis and end
of this lecture series as such. So, for those of you who are taking down the test of the
final examination as well, so, we wish you all the best for your exams and all endeavors

in future and life.

Well then thanks and we wish you good bye from this course.

