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Understanding Video Analysis

[noise]

Welcome.  Ah. In this  week, [noise] we are going to start  with ah one of these most

interesting aspects and that’s about video analysis.

 (Refer Slide Time: 00:17)

Now, till whatever we have done, ah on the lectures as of now, they were to do only with

2 D images or single frames over there and ah it was frozen over time. So, you do not

have  this,  ah  [vocalized-noise]  time  varying  nature  of  these  ah  images  or  anything

created out over there [vocalized-noise]. Whereas, one of the major ah chunks of analysis

which we end up doing, for ah current applications are all on videos and, what comes

down is that, while you can always treat down videos as is just a bunch of frames over

there and then keep on operating one frame at a time [noise] and ah still get down your



results [noise] coming out of it and use them, for your further analysis or summarization

ah of [vocalized-noise] whatever analysis you want to do [vocalized-noise].

The main ah point, or or the main aspect which we often tend to forget is that, there is

some sort of temporal consistency between these frames as they keep on coming [noise]

[vocalized-noise]  and,  what  that  necessarily  means  is  that,  ah  [vocalized-noise]  we

should be in some way able to use ah the features which come down on the feature space

over here in [vocalized-noise] in terms of [vocalized-noise] just the spatial dimensions

[vocalized-noise].

Now, do they have some sort of ah [noise] cross dependent relation between the [noise]

ah between time frames? [noise] Now, nonetheless ah [vocalized-noise] what should also

be another interesting meaningful thing over here, is that, ah [vocalized-noise] since we

have ah these videos available, which can otherwise be just considered as a chunk of

frames, [vocalized-noise] then ah we should also be in a position ah somehow to run

down some sort of convolutions over there.

Now, [vocalized-noise] whatever convolutions you had done, ah you were doing till now,

they were all ah spatial. So, [vocalized-noise] there was obviously, a three dimensional

array, but then the third dimension was at the number of channels which comes down

and  as,  as  far  as  till  we  have  been  concerning  over  here  in  terms  of  these  tensors

[vocalized-noise]. So, the way these are represented is that the full dimension is actually

the batch size, the second dimension is where you have the number of channels, input

channels over there, [vocalized-noise] the third dimension is the x axis and the fourth

dimension is the y axis present over here, [vocalized-noise] And if I if I am considering

something in terms of video, I need to have this extra dimension over there, which is of

time [noise].

So, what we do is, ah while typically video files as such are recorded in a way, where ah

[vocalized-noise] you have the time axis as something which supersedes the color axis

over  there,  which  means  that  in  our  representation  it  should  have  been  batch  ah

dimension, then the next dimension is what [vocalized-noise] represents the time and

next  dimension  is  what  represents  the  color  channels  and  then,  you  have  x  and  y

[vocalized-noise]. But then we do not do it for a very specific and obvious reason over

there  because,  over  channels  over  color  channels,  you  cannot  convolved  anything



[noise]. So, you need to convolve it over the time dimension over there. So, how it works

out is, what I am going to do [vocalized-noise].

So, it is it is ah really hard to just keep on explaining in terms of ah speaking out over

here. So, I will just be using a few of these illustrations to get this concept clear. So,

today we will be doing about ah [noise] understanding the very basic concepts of, how to

handle down videos [noise] and ah can I get down something on the special side of it to

work out on my videos, and the next lecture,  I am going to get you introduced to a

sequence modeling ah concept called as recurrent neural network, which is something

which we use for ah [vocalized-noise] as such, is typically being used for ah speech and

natural language [vocalized-noise] processing or any kind of a sequence data analytics

and then, how do we end up treating these ah [noise] ah say images, image frames over

here on a video volume, in terms of ah some and and extracting some features, which can

now  be  fed  down  to  my  ah  [noise]  record  neural  network  for  sequence  modeling

[vocalized-noise]

So, this is what [noise] ah how the flow will going down ah will be going down and then,

then subsequently the next day we had be looking down into how to engage ah say ah

spatial convolutional network, plus a temporal learning [vocalized-noise] network with

respect  of  a  [vocalized-noise]  recurrent  neural  network  [vocalized-noise]  together,  in

order to get some sort of an analytics done over a whole video volume [vocalized-noise].
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So, [noise] [vocalized-noise] let us ah get into the Organization over here [noise]. So,

how it  is done is today I am going to [noise] rebrief you this ah sort of a similarity

between [noise] images and video [noise]. So, we have already done ah the images part

of it when we were looking into the early courses, early early lectures in this particular

course in the first week itself [vocalized-noise]. And then, how do we deal with images

and then in terms of convolutions what happens over there [vocalized-noise].

Now, today I am going to extend that [noise] whole concept over to videos how it goes

down [vocalized-noise]. And then, ah I will enter into the Data Organization and Video

Tensor representation. So, this is what I was telling you initially [vocalized-noise] just a

couple of minutes ago that, ah [vocalized-noise] what dimension of my tensor is going to

represent which aspect of the data [noise] [vocalized-noise]? Subsequent to that, ah I will

be getting you introduced to ah Neural Networks for Video Handling and this [noise] this

will be very specifically just convolution neural network. Because as such, [vocalized-

noise] if you have a fully connected network over there, then it becomes easy because

you can just [vocalized-noise] stand down all your neurons over there irrespective of

whatever you are doing and then, ah [vocalized-noise] ah it can directly be used. But, the

moment you are speaking about in terms of convolutions and it does not become so easy.

So, here comes in a trick like what axis [noise] do you convolve around for each of them

[vocalized-noise]? And, what happens to the number of channels, because now your data



technically  becomes a four d data [noise] if  you have a colored video representation

[vocalized-noise] [noise].

So,  that  is  what  we  will  be  doing down in  this  [noise]  Neural  Networks  for  video

handling and then, enter into convolutions on video tensors and what is the input and

output size relationships between each of them and take in a critical case [vocalized-

noise] ah a very typical case and see down what is the criticality of [vocalized-noise] ah

handling on direct temporal convolutions, ah spatiotemporal convolutions on these kind

of ah data [noise]. And then, ah enter down into challenges and following that, ah I will

give you a very brief introduction to spatiotemporal ah modelling for deep learning and

[noise] what, where it actually comes down on the spatiotemporal concepts over there

[vocalized-noise] [noise]? Ok.
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So, ah as far as ah Images and Videos are concerned [noise], so typically, ah if you look

down on our ah earlier ah notions and this was an rgb image ah given down. So r, g and b

were the three different channels [vocalized-noise] on the input [vocalized-noise]. Now,

[vocalized-noise] ah with, whatever we have done till  now you one thing which goes

down clear to your mind is that, number of channels is ah [vocalized-noise] quite an

independent aspect and it is just dependent on the operators [noise] and what happens



down with  [vocalized-noise]  number  of  channels  is  that,  you can  keep on changing

[noise] the number of convolution kernels, [vocalized-noise] [noise] which would come

down over there and that is something which is going to play around [noise] with the

total number of channels. 

And as a result, what would come down is, that [vocalized-noise] you all ah [vocalized-

noise] these ah [vocalized-noise] it is it is not necessary that you just need r, g and b

channels over here. So, you can have one channel data, you can have two input channels

or say subsequently down the line [vocalized-noise] as you traverse across the depth of a

convolutional neural network, you have even [vocalized-noise] more and more number

of channels. So, there are 16, there are 6 channels, there are 32, 64 [vocalized-noise] and

and this is a very generic concept.

So, [vocalized-noise] ah while in the earlier days, it was really ah [vocalized-noise] quite

an effort for you to understand ah channels in terms of ah what happens when they are

just increasing more than 3 over there, but [vocalized-noise] now we [vocalized-noise]

have all of us are sort of ah used to this concept [vocalized-noise]. So, I am just going to

refer down to color images with a simple example of ah three channel thing, because it

makes it easier and [noise] intuitive to do, at the later on all of these are genetically ah

[noise] scalable concepts. So, down the whole pipeline of our ah temporal video tensor

you have everything going down in the same way [noise] [vocalized-noise].

So,  now  if  this  has  ah  M  and  N  ah  number  of  columns  and  rows  over  here.  So,

technically the size of it is represented as 3 cross M cross and N that is what an r, g, b

[vocalized-noise]. So, if your number of channels is c, then you [vocalized-noise] in in a

general case you would represent this as c cross M cross N [vocalized-noise]. Ok.

Now, if I have my convolution, what I would have is [noise] technically, 1 1 2 d matrix

for each of these channels and and [noise] technically, [vocalized-noise] that makes up ah

like you have [vocalized-noise] ah a 2 d matrix for each channel. 

So, the number of [vocalized-noise] 2 d matrices over there, will be equal to the number

of  channels  and  then,  what  you  do  is  you  do  a  dot  product  for  each  of  these  2  d

[vocalized-noise] tensors and then, ah you take it is average over all of these tensors

together, or or summation over all of these tensors together and that is a scalar value

which you get down and this scalar value is what is representing [noise] one single x y



locations output for a particular given [vocalized-noise]. So, if you have multiple number

of kernels over there, so that will be the total number of channels which you are going to

create down [vocalized-noise] [noise]. Ok.

So,  that  is  ah  quite  straightforward  that  the  [noise]  number  of  channels  in  your  ah

convolution [noise] volume over there is also going to [vocalized-noise] be the same as

the  number  of  channels  in  your  ah  ah  [vocalized-noise]  input  data  over  there.  Ok

[vocalized-noise].

Now, if I look down at my video side over there. So, the difference what it comes down

is, that it is going to be a collection of frames. Ok [vocalized-noise]. So over time, I have

my camera and I am shooting down a video [noise]. So, what that means is that, I am

looking  forward  over  here,  and  and  it  keeps  on  shooting.  And  then,  between  ah

[vocalized-noise] ah so, what I essentially get is, a series of 2 d frames and each arriving

ah with a de fixed difference of time. So, if I have a 50 fps or 50 frames per second of a

video acquisition system, then ah [noise] with the difference or 20 milliseconds, I will be

be getting down the subsequent frames coming down to me [vocalized-noise]. 

And what that means is that, ah this whole tensor is now going to have a size something

called as T [vocalized-noise] cross 3 cross M cross N, by T is the total number of frames

which I am considering [noise] along the time dimension over here [vocalized-noise].

And now, ah [vocalized-noise] given this whole understanding of T cross 3 cross M cross

N over here, [vocalized-noise] what we do ah get to understand is that, in terms of my ah

technical [vocalized-noise] way in which how this video is located, [noise] is that I have

3 cross M cross N this is a 3 d matrix over here [noise] and then, I ah on on my fourth

axis over here, I am just going to pad it down.

So, for us the priority of the axis is that the major axis is something which comes at the

first point over here [vocalized-noise] at the the first dimension for my data [noise]. So,

this  is  where,  I  am going  to  use  all  of  this  and  stack  it  down  [noise].  So,  this  is

[vocalized-noise]  typically  how  it  is  represented  in  terms  of  a  video  [noise]  tensor

volume.

So, whenever you are trying to access a video, from a [vocalized-noise] video file, avi

file or something and write it down to a math file or hdf five file, this is how it would be

represent [vocalized-noise]. But, the problem is that, this is not how the [vocalized-noise]



tensor gets ah taken care of if I am trying to do a convolution over that. So, I will have to

make some changes over there [noise] [vocalized-noise]. Ok.
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 So now, for organizing this data and the video tensor, this is what we typically end up

doing [noise]. So, I have my video which comes down to me, where the frame size is M

cross N, and then I have ah [vocalized-noise] T number of such frames. So, so this is the,

ah organization of it. Now, what I would technically do is, I would pull out each of these

color frames separately [noise]. So, each channel is pulled out separately and then [noise]

ah what I end up getting is, my channel is is my, is is going to be my ah priority axis over

here. So, technically where [noise] I would be twiddling between these two dimensions.

So, T comes [vocalized-noise] in place of 3 and 3 goes in place of T [vocalized-noise].

So, what that means is that, I have, ah T cross M cross N volume, for my red channel, I

have a T cross M cross N volume for my green channel, and a T cross M cross N volume

for my blue channel [vocalized-noise]. Such that; this is something, what it would be

looking down? So, instead of having a 3 d matrix now ah at each time point, I am now

going to have a 2 d matrix, such it each time point [noise]. So, first is going to be my red

channel. Ok. So, this makes it as a [noise] 3 d matrix of size M cross N cross T or T cross

M cross N anything what you [noise] want to do [vocalized-noise].



Now, I will have another volume of ah for my green channel and that will also be of the

same size. I keep on constructing another volume, for my blue channel and that is also of

the same size [vocalized-noise]. Now, that I have 3 of these volumes and if I am going to

somehow ah [vocalized-noise] concatenate them along the major axis over here.

So, that would mean that, I need to create one more axis of the data. So now, instead of

[noise] T cross M cross N, this red channel is going to [vocalized-noise] look like 1 cross

T cross M cross N. [noise] This green will also be 1 cross T cross M cross N, and the

blue will also be 1 cross T cross M cross N. And now, if I concatenate that along the first

dimension [noise], so that is something which is going to look like 3 cross T cross M

cross N [vocalized-noise].

And now this again, ah boils down to the same ah kind of a philosophy as we had for our

standard 2 d special convolutions [vocalized-noise]. So, in 2 d special convolution, what

you had is the batch, ah number, the batch size or the [vocalized-noise] whatever is the

index along the [vocalized-noise] batch of ah image frames or ah data coming down to

you. Then, the next one was your number of input channels and then you had your ah

first dimension and second dimension of the data.

Now, for us this data is now in 3 dimension. So, it is T cross M cross N [vocalized-

noise]. So, that is what I have over here. This 3 is now my channels [noise]. Ok? And

then, if I have another ah part of my batch handling over here, then this [vocalized-noise]

preceding [vocalized-noise] part of the term is what would be representing my batches,

and this is what comes down in terms of my ah 3 d volume, which I have ah for video.

So, this is a time space volume, and there are 3 channels of these time space volume.

[noise] This is how you can imagine it pretty much [noise]. So, there is a red channel of

my time and space volume, there is a green channel for my time and space volume,

[noise] and there is a blue channel for my time and space volume [noise]. And then, this

together creates out the whole gamut of my ah video, which is represented in terms of a

tensor [vocalized-noise] [noise].
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Now, let us get into, what will happen when I am trying to use a Convolutional Network

for Handling of this kind of a Video? [noise] [vocalized-noise] So, I will be having these

kind of  volumes available  to  me.  I  have my red channels  volume,  I  have my green

channel volume, I have my blue channel volume [vocalized-noise] [noise].

Now, if I would like to convulse it ah over there, then I would need another ah set of

kernel, ok [noise]. Now, as a result of this convolution, I am going to get down one block

volume coming down. So, essentially what it means is that, this [vocalized-noise] small

red  volume cube,  which  is  my kernel  for  convolution,  [vocalized-noise]  this  does  a

convolution  over,  so  it  does  a  dot  product,  wherever  it  sits  down on the  first  valid

location  over  there [noise].  So,  it  sits  [vocalized-noise] at  this  location  it  does a dot

product, the green one sits over here does a dot product, the blue one sits over here does

a dot product, [vocalized-noise] and then it sums up [vocalized-noise].

So, in case of your [noise] ah 2 d convolutions, what you are imagining as a 2 d ah

[noise] [vocalized-noise] as a 2 d matrix, which sits on top of the image, one of these

channels of the [noise] image and does a dot product. The second two d matrix for the

next channel sits on top of the next ah channel over there, for video ah for your image

and then does a dot product, and the third one sits over there and together you take it out.



So, now you have to imagine the same thing and [vocalized-noise] instead of for 2 d,

[vocalized-noise] it is now a 3 d, which is fitting on top of it and this is generalizable. So,

if I, if I have some ah 4 d matrix which is taken [vocalized-noise] over n number of

channels, then I can still  have the same thing, [vocalized-noise] that makes it hard to

imagine on the first slot, but [vocalized-noise] typically that sets how it is going to be

and then it is a generically ah [vocalized-noise] scalable of concept [noise] [vocalized-

noise].

Now, my output is going to be as such, just one single channel and this will still be a time

space volume based on, if I had a 2 d space over there and if  I am convolving, my

resultant  is  a  2  d thing.  Ok [vocalized-noise].  Now, if  I  have a  3 d thing and I  am

convolving in 3 d, then my resultant is also supposed to be a 3 d. So, my convolution is 3

d convolution that is that is not a 2 d convolution as we had in the earlier case. So, here

we are just going to treat all of these convolution sets typical 3 d convolutions [noise]

[vocalized-noise].

Now from there, if I have another kernel, over here [vocalized-noise] [noise] then that is

going to lead to another channel formation [noise]. Similarly, if I have another kernel, I

get down another channel which is form, [noise] and another kernel which will get me ah

another channel formed down [vocalized-noise].

So,  this  also  goes  in  line  with  our  original  understanding  and  philosophy  which  is,

[vocalized-noise] that the total number of channels on my output of my convolution is

going to be dependent on the total number of convolution kernels I have in a particular

given convolutional layer over there. So here, since I have four different convolution

kernel, so it is going to lead down to four different [noise] ah channels coming down

over here and that is pretty straightforward. Now, that there is not much to get confused

in any way [vocalized-noise]. Ok.

Now,  well  ah  comes  in  the  interesting  aspect  is,  [vocalized-noise]  that  you  can

technically  see  that  I  have  increased  one  extra  dimension  [noise]  of  the  data  and

associated with this one extra dimension of the data comes ah in its own computational

complications as well. Ok.

So, let us look into one of these examples. Let us take one of these kernels over here, and

try to convolve it with this whole time space video volume over here and then come



down as what comes on my output? And, then see [vocalized-noise] what is the net effect

of this output as it comes down ah through this kind of a convolutional concept. And and,

let us let us look into the width, height, ah depth and these calculations coming down.

So, what is the resultant aspect of the convolution [vocalized-noise] [noise].
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Now, as goes down over here. So, I have my, ah time space volume, and then the three

channels  of  my  time  space  volume  are  available  [noise].  I  take  down  my  first  ah

convolution kernel, which is also a three channelled [noise] convolution ah kernel over

here, and then [noise] I get my resultant in terms of a time space volume for one single

channel [noise]. Ok.

Now, ah taking down the same kind of ah [vocalized-noise] analysis which we had done

earlier, so in your earlier analysis what you had was, that your output over here is going

to be M minus w plus 2 P w divided by S w. Where [vocalized-noise] your O w is

basically width of the output. So, you consider any one of these axis over here, as your

ah current width. So, I am I am taking this as my current width. I can also be putting

down the same equation to do it along this, along this any any one of them. So, that is

that is just which particular [noise] axis you are looking at you need to understand the

padding and the stride along that particular axis. Ok [vocalized-noise].



Now, w is basically width of the kernel along that axis. So, if I am looking at [noise] the

x axis over here, then I would be looking at what is my ah [vocalized-noise] width of the

kernel along the x axis. Then, I will have my padding over there. So, I can pad down

along  each  of  these  axis  in  a  different  way. So  since,  it  is  a  3  d  tensor  over  here

[vocalized-noise]. So, in in case of your 2 d convolutions, you could see that you had to

give down [noise] only 2 different  padding [vocalized-noise]  criteria  over  there,  you

could  like  explicitly  mention  down  [noise]  or  if  you  are  just  mentioning  only  one

padding  criteria,  then  that  is  what  is  reflected  across  all  the  dimensions  over  there

[noise]. 

Otherwise, if you are giving it within a tensor tuple, then ah the first one is for the first

dimension, the second is for the second dimension [noise]. That is that is how could you

could do. So, here your if you are giving it down in terms of a tensor tuple, then you

have to have a 3 cross 1 ah size tensor, and not ah a 2 cross 1 size tensor as you had in

the  spatial  convolution  side  [vocalized-noise].  So,  that  is  the  next  difference  which

comes down over here [vocalized-noise]. Ok.

Now with that, you can also specify your stride and as we had seen, that you can have

stride along each directions in a different way or you can put down isotropic stripes. And

typically, if I am [vocalized-noise] not mentioning stride in any way or padding in any

way. So, if there is no padding mentioned then it is a 0 [vocalized-noise], there is no 0

padding added down. So, there are no extra pads coming down [vocalized-noise]. If my

S w is also explicitly not mentioned, then it is just something which happens with the

stride of 1. And [noise] this is what my output comes out [noise]. Ok.
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Now, where the challenge comes is quite straightforward. So, if I am trying to do this

convolution [noise] over here,  with one of these ah blocks and then,  I get down my

output. Now, as I get this output coming down over here, what would happen is that, this

is my relationship which I had learnt on [vocalized-noise]. Ok.

Now, let us [vocalized-noise] take a very typical case and this typical case is where, my

M is 224. So, ah my image net sized frames which I was taking till now, they were all

224  cross  224  ah  [vocalized-noise]  size  freedom.  So,  they  have  a  three  number  of

channels, so 3 cross 224 cross 224. Ok.

Now, if I am taking [noise] say a video, which is shot on the same resolution as an image

net over there. Ok. So, in that case; I can have some ah fixed number of frames over

there. But, let us look into one of these accesses of now [vocalized-noise]. Ok.

So, [vocalized-noise] if M w, M is something like 22 [vocalized-noise] ah 4 ah cross 224

and this time, has some some other dimension. I will come down to that shortly [noise]

[vocalized-noise]. And say, this w over here, this with is something of the size of 3. My P

w is  0 and S w is  1.  In that  case;  my O w actually  comes down to be 22 ah 222,

[vocalized-noise] that is pretty simple. So, I have 224 minus 3 plus 0 divided by 1. So,

that is 220 ah ah 221 plus 1 which makes this [noise] 222.



So, that is my output width over here. So, my output width is directly related. Now, that

is that straightforward. However, I have my time dimension. So, now, I need to get down

into, what will happen on the [noise] three d case [vocalized-noise]?

Now, say my input over here is 3 cross 100 cross 224 cross 224, which technically means

that I have 100 frames [noise] available over there, each of size 224 cross 224. And now,

my total number of convolution channels over here, over here I was doing it just with

one channel, but my total number of convolution channels, ah in in my convolution layer

is 16. So, that is the total number of kernels I have.

So, now my output is going to be something like 16 cross [noise] 98. Now, where this 98

comes down is that, [vocalized-noise] my w over here is 3, and this is what I am going to

consider isotropic across all of them, if I am not explicitly specified [vocalized-noise].

So, for this axis over here, ah where my time axis has 100 ah [vocalized-noise] is is the

the size of the tensor dimension along the time axis is 100. In that case; this output along

that one is going to ah be calculated something like 100 minus 3, because [noise] I am

taking down 3 cross 3 cross 3 size kernels. So, its 100 minus 3 [vocalized-noise] ah plus

0 divided by1. So, that makes it 97 plus 1 is 98. So, that is where I get down this one.

And then, my 222 cross 222 is what is the straightforward calculation which I see over

here [vocalized-noise].

So, this is where you have both the spatial aspect, as well as a temporal aspect being

integrated together and it comes down into one single ah output. Ok [noise] [vocalized-

noise].  So,  if  you  look into  this  particular  problem,  what  you can  see  is  that,  with

increase in this extra dimension over here, there is a significant increase in the total data

overhead. Now, if you [noise] write down ah as in the earlier cases we had been doing

our pen and paper empirical solutions into, what is the total parameter space? [vocalized-

noise]  Then we found out,  what  is  the  model  space  in  terms  of  bytes? What  is  the

operational  space  requirement  for  the  model?  And,  what  is  the  operational  compute

requirement for the module [vocalized-noise]?

Now, if we go down with the same logic over here and place down, because of this extra

increment of ah [vocalized-noise] dimension and this coming down to 98, now that is a

huge burst up. So, it is it is almost 100 times more memory which it is going to take. And

[noise] including these channel over here, this kernels over here are also going to get on



one extra dimension of ah parameters which it has to learn [noise]. So, it is not just that

the  parameter  space  is  exploding,  it  is  also  that  you  have  an  explosion  around  the

operational space complexity.

Now, this  is  an  alarming  factor.  Because  of  these  issues,  it  becomes  really  hard  to

actually operate on a [vocalized-noise] substantially sized video. So, if my [vocalized-

noise] camera is acquiring ah something at 50 fps [vocalized-noise]. So, technically that

means, in just in two seconds of time, I will have 100 frames acquired [noise] over there.

Now, in two seconds of time, most likely my actions will not be changing significantly

over there in any way [noise].

And, if that is the situation, then I am not getting to get down a substantial amount of

description about the [vocalized-noise] whole action in a video [noise]. Maybe I can just

comment on two second, what happened in these [vocalized-noise] two seconds, but not

[vocalized-noise] what happened in the overall activity present over there.

So, these are challenges which we would be facing ah [vocalized-noise] while trying to

do these analytics.

 (Refer Slide Time: 22:28)



And now, in order to get rid of this challenge, there is actually a very simple way, which

is called a Spatio-Temporal Deep Learning and this is [noise] ah rather effectively used

way which, a lot of people on the community work out on. Now, what it does is, ah say I

have my frames available over here on my video, then I am going to extract out all the

frames over there [vocalized-noise]. And now, instead of considering ah like reorienting

my dimensions on my ah video over here, [noise] what I choose to do is? I choose to

extract each frame and trying to operate on each of them [vocalized-noise].

Now, if I have this whole thing of ah T cross 3 cross M cross N [noise]. So, what that

would mean is? I can pull out any one of this frame from here, which is going to be of

the size of 3 cross M cross N. Ok.

So, let us pull out one of this frame. Now, what I can do is? I have these image net sized

ah networks available to me, for for doing ah classification [noise] and if I, as I had done

in the earlier experiments, in in most of our experiments what we had done is, we took

down a model which was more of salt for the image net problem, and we were trying to

solve something else [vocalized-noise] [noise] ah for a similar scale of data and to keep

everything tractable  we were trying to solve it  with the c  fact  n problem over  there

[noise].

And, for that purpose what we had done is, we pulled out say vgg net or googlenet or res

net, dens net [noise] any of these networks, and the image was taken down from sefa and

it was scaled up. So, while I was loading the on a sefa image instead of for 32 cross 32

[vocalized-noise]. So, I scaled it up to 224 cross 224 [noise] sized and then I placed it

into my network [noise] over here and then, I get down ah my my total output cover. So,

I was truncating my total [noise] number of classification layers over there, instead of

making it ah 1000, which is typically for image net I chop it off and make it just 10

decision layers [vocalized-noise].

Now, if I am not adding this decision layer in any way, what I get down over there is, just

my feature vectors and that is what I am going to consider over here as of now within

spatiotemporal learning [vocalized-noise]. So, the idea is that you pass it down through a

network, and then if you keep down sending each individual frame in the same way,

[vocalized-noise] then you are going to get  down an output  [noise] tensor over here

which has some k number of neurons. So, it is a k cross 1, that is that is just before the



final  ah [noise]  [vocalized-noise]  layer  for  ah doing the fully  connected  network for

classification,  you  have  a  linearized  out  and  then  there  may  be  some  some  extra

connections given down. So, it depends on ah you can have ah [noise] 4096 neurons over

there, you can have 512 neurons, you have 1024 neurons any of these number of neurons

[vocalized-noise].

But then each [noise] tensor is what is corresponding to one frame. So technically, this

whole thing becomes a T cross k size tensor, where T is this dimension of the [vocalized-

noise] time length which goes down. Now, if I come down from this video space over

here which has T cross 3 cross M cross N [noise]. Now, this whole thing is mapped down

into a  T cross  k size [noise]  tensor, where 3 cross M cross N dimension is  what  is

mapped onto these k dimensions over here. So, that is linearized and mapped and to ah

much reduced out space, whereas your time ah [noise] dimension still remains the same

[vocalized-noise]. 

And this is a concept, which we are going to now [noise] ah make use of. So, now that I

have this k number of neurons, each representing one timestamp of a tensor, now I can

use this as some sort of a time stamped feature, [noise] which consolidates out my whole

visual aspects on a frame and then, use it for passing through some sort of a sequence

learning model [noise].

So, this is basically a sequence of features which I have [vocalized-noise]. So, in the next

lecture,  what I am going to cover is something which is called as a recurrent  neural

network. So, I will introduce you the whole theory of a recurrent neural network, [noise]

and then enter into something called as a long short term memory, which is one of the

most ah [vocalized-noise] viable meth ways of ah doing and solving out these recurrent

neural networks. The input to this which I would be calling as, features or aspects or

attributes over there [noise] and what are these T cross k tensors and each timestamp is

[noise] one timestamp tensor which enters over there.

So, ah instead of waiting keeping you [vocalized-noise] waiting for long. So, we will be

doing those things [noise] tomorrow. So, once we finish off in the next lecture, the series

and  understanding  and  the  theory  behind,  what  happens  in  a  recurrent  network  for

sequence  modeling?  In  the  subsequent  one,  we  are  going  to  show  you  a  clear  cut



example of, how this problem has been solved out? So, still ah till then ah stay tuned and

ah.

Thanks [noise].


