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Welcome, so, this is on yet another interesting topic. So, what we are going to do is, use

the adversarial autoencoder network, which we had learnt in the previous lecture in order

to even build up a classifier. So, this is what I was telling you in the previous lecture that

what we have been doing till now in that example was basically to use these networks in

order  to  generate  out  synthetic  samples.  Now  it  is  good  to  generate  out  synthetic

examples,  because now you can really  augment out your data set with these kind of

examples going on over there.

Now, at the question still remains that can I make a classifier network, robust to these

kind of adversarial examples, which means that I can have unknown examples, unknown

types  of  examples  which  comes  from,  because  from your  adversarial  learning  what

exactly happens is that you have some discrete points around on your feature space over

there which has spread out around everywhere. And then you are going to pull out from

one point over here on the Gaussian, and you model this as a Gaussian network over

there.  And now that  you are pulling out  these random points over there,  and pass it



through the decoder network you have some sort of an image being generated. That is

straightforward what you are doing down.

Now,  the  question  which  comes  out  over  here  on  the  adversarial  autoencoder  for

classification is that, instead of trying to use all of those synthetic examples which I have

generated, can I use this encoder block over here, in order to train a network, and is this

assumption valid that the classification network which is built up on top of using this

encoder block on the autoencoder is going to be robust. So, this is the straight question

which we are going to answer in this particular lecture over there.

Now, the first part of it is just to look down into your standard usable routines and header

files over there here there is going to make use of them.
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Now, from there the second part of it is to load down your data set and have your data

loader ready. So, this is where we do not make any change as such coming down from

whatever was there in the earlier lecture so, it is it is pretty simple. So, let me just run

each block over there as I keep on moving down.
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So now on my data set let us run it so, you have your data set loaded down. And then you

have your these extra variables on NumPy conversion as well as a extra functions on

NumPy conversion or to conversion to an auto grad variable, and on converting it down

to a cuda. Now once that is done we define our network over here.

(Refer Slide Time: 02:40)

So, the network is quite simple and straightforward. And it is at the same network which

we had done in the earlier lecture, lecture number 54 where we were trying to generate

out synthetic examples.



Now, so, we write it down in a very generic format such that you can take a any number

of inputs on your any number of input neurons on your side over there. And then pass it

through this network in order to get down your latent variable or the hidden variable

space over there. And then the hidden variable space is something which you can change

based on how you would like to do it. And the total number of a, hidden layers over

there, and the number of neurons in the hidden layer is what you are going to keep it out

straightforward.
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So, that is how this model is going to work out. And then whether to choose and have

dropout or not is up to you. And we are sticking down to the same, exactly the same

network we are not making any change over there, ok.
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So now you have your encoder defined, you have your decoder which is also defined in

the  similar  way,  and  then  you  have  your  discriminator  for  your  real  versus  fake

discrimination over there. So, this is also defined in the same way, as a is, it was done in

the previous lecture, and we are not going to make any changes on that one.
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Now, in order to define your optimizer; so, let us see yes that has run and I am ready. So,

in order to define your optimizer this is where I make a few changes coming down. So,

one is this important part over there. So, your z dimensions, in the earlier case was just



limited  down  to  2  variables  over  there.  So,  you  had  a  2-d  random  number  being

generated out of this latent variable space. Now this is what we have changed it down

and made it down to 100, and one of the reasons for changing it from 2 to 100 was if you

closely recall  from our experiments  in using auto encoders in order to classify these

digits in m nest, then we did realize that if you have lesser number of neurons in a given

layer,  and  there  is  a  significant  bottlenecking  which  happens  over  there.  Your

reconstruction quality is affected, but on the other side of it you are going to squeeze out

and compress all of these features so much that trying to classify out with these features

also becomes really problematic.

So,  essentially  what  we  have  to  do  is  we  need  to  retain  say  an  over  complete

representation  of  these  features  which  comes  out  over  there.  And for  that  particular

reason instead of taking this latent variable space as just a 2 d tenser over there, I am

going to take this as a 100-d tensor, so, this is the only change. So, definitely for that

reason in the earlier case where you could vary down from minus 1 to plus 1 in unique in

uniform intervals and you get down some 100 random values, and that helps you in order

to synthesize images over there.

So, here it is it is no more possible because it is 100 dimension, now trying to visualize

anything beyond 3 dimensions is definitely problematic. I mean, you can add color and

maybe visualize a 4th dimension, but it said seriously problematic to go up to say 100

dimensions over there in anyway. So, that is where we do not make use of in that way,

but I will I will exactly show you a bit later down as to the advantage which you get

down when you do it with 100 dimensions, and how can you still pull out some random

values on this 100 dimensional vector in order to show your synthetic examples synthetic

samples, which are generated ok.

So, let us run this part while I go down through the rest of it. Now for my network,

which is my encoder over there, it is a plain straightforward and similar to the earlier one

you have 1000 neurons in your hidden layer over there. The only change which comes

down is  that  you have 100 neurons in  your  bottleneck  layer  present  over  there.  So,

similarly comes down your decoder which has a similar kind of a configuration and your

discriminator over there which also has a similar kind of a configuration so, we are not

changing anything.



The only thing which changes in the discriminator is that my number of neurons in the

hidden layer is no more as a 1000, but this number of neurons over the range is 500, 500

present over there. So, and this is a like what we had in the earlier lecture as well, ok.

Now for the generator and the so for 2 of them one is the generational learning rate

another is the regularization learning rate. So, what this basically means is that in one

pass of it you are going to do a forward propagation over your encoder decoder network

in the next pass, you are going to do a back propagation over your discriminator and a

back propagation over your encoder as well.

So, for these 2 we are setting down 2 different learning rates over there, and that is to

keep it conformal to the dynamic range of the gradients which get on generated over

there, ok. So, that is that is the only point over here, and then you have your 2 optimizer

set down for the 2 different passes over the network.
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So, once done so, we have our test data which is being generated, now in the earlier case

if you remember our test data was something which was sampled out in the range of

minus 1 to plus 1 in 2 dimensions over there on a uniform sampling.

Now, here I do not have that option of doing it, because it is a 100-dimensional variable.

So, what I essentially end up doing is, that I sample out some random 100 numbers on a

100-dimensional  space  which  exists  on  a  Gaussian  distribution.  So,  you can  have  a

multivariate  Gaussian  distribution.  So,  here  we  choose  to  have  the  total  number  of



variables as 100 in this distribution from where I would like to pull out these numbers.

So, I pull out some 100 random numbers from a 100-dimensional Gaussian distribution

used over here, ok.
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So, that gets in my test data created. So now, after that I start my training process over

here. So, that is the straightforward training process which I have over there.

(Refer Slide Time: 18:24)

And in which you do your first pass over the network for your encoder to decoder, and

then the second pass is where you are going to train your discriminator, and also update



your encoder part of the network. And now the loss functions which we take over here

are binary cross entropy for both of them, now for a very simple reason that say your

discriminator anyways is going to pull out 0 and 1, which is fake or real over there.

But then your encoder over there, whatever it produces it is in a range of 0 to 1. So, on

these m nest you clearly remember that your background was all black and your digit

was written down in white or say vice versa whichever way you want to take it up. So,

anyways this is the one versus the other class 0 1 classification and binary cross entropy

is definitely a good way of working out on this network over there. So, let us get this part

of it running as well.

So, I have run till optimizer so, let us initialize out the test data, and then I get this one

running while we look into how it works out as well. Now the rest part of the problem is

pretty straightforward. So, there is no major change which comes down in the routine

over there. Except for the fact that here we are not going to train it down over a lot

number of Epochs, we just going to train it down over 50 number of Epochs um..

(Refer Slide Time: 09:40)

And that is so, the change which comes over here is that since your latent variable is no

more too or not much squished out over there.

So, you can actually  have an over complete  representation in this  intermediate  layer.

Now that you have a over complete representation in this intermediate layer. So, there is



not  much  of  information  loss  which  happens.  And  since  there  is  lesser  amount  of

information loss which as such can happen down over there. So, with lesser number of

Epochs you will actually be starting to look out at a convergence point. So, we are just

looking down at 50 Epochs over here in order to come down closer to a convergence

point and um. So, as it keeps on training over here, you would be seen this these are the

kind of images which keep on getting generated.

(Refer Slide Time: 10:21)

So, at that the initial part over there, you would see these things which look like 3, and

then there are bit of these which are noisy. And eventually this would like some of them

would start taking up the figure of an 8, some of them will still be looking down a 3

something which looks like almost a 0, but not exactly a 0 some of them start looking

like 9. And these are the different varieties which it comes on creating. Now this is at the

initial stage of it and a as it keeps on getting updated sometimes in certain Epochs you

would see that it completely washes out and there are no distinct one.

So, in the earlier Epochs you could see out some certain figures, but here I am not able to

see  out  any  distinct  figures  which  keep  on  coming  on.  Now  that  is  a  part  of  the

generative model itself, because it is it is a game play which is happening. So, once your

encoder decoder is trying to optimize itself, then there will be some sort of a shift in this

latent variable distribution, then while you are trying to train discriminator, you are again

going to enforce that these 2 come down closer to each other, and then this in this whole



process that these 2 distributions start me making each other, which means that the latent

variable starts me making the random value distribution from where you are drawing

samples. You are going to update the encoder.

Now, that this encoder weights had changed so, the decoder also has to learn itself, and

this keeps on going on and on. So, that is that is what you essentially keep on seeing over

here. Now this might take some time, so now, it has run down for 50 Epochs and this is

what we have over here. Now from a generative principle it does not look that clean and

clear you can, but this is just for the sake of a the lectures which we are doing over here

that we would try to minimize the amount of time needed. 

Now typically what I would suggest is that keep on running this for about a thousand

Epochs when you start looking at a very exact looking numbers created out over there,

and then the generator  actually  is  something which is  converging,  and your  encoder

decoder over there has also learnt out robust weights ok.
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So now let us get into the classifier over here in order to see what happens. So now, the

whole  objective  is  that  I  have my autoencoder  which  was trained out.  So,  I  had  an

encoder decoder and I had a discriminator. But now what I am telling is that instead of

trying to use this synthetic examples in order to train a classification model, can I use this

encoder  block alone in  order  to  use a  classification  model?  Now we have done our

lectures on domain adaptation,  we have known how to actually transfer a pre-trained



model an existing model on to earn your kind of a mechanism; where you can actually

modify the architecture over there as you go on.

So, that is what we are going to do over here as well. So, this is a plain simple domain

adaptation thing, which we are going to solve out. So, here what we do is, we take this

network Q or which is that encoder which we had defined earlier.

(Refer Slide Time: 13:22)

So, let us go up, so, you have this Q net over here which is my encoder block which was

defined. So, what I am trying to do over here is create a new neural network in which the

first part is just this Q on the encoder block which was defined. Now the output of that

encoder block has a 100 neurons being thrown out, and if I am trying to solve a m nest

digit classification problem then I have 10 classes it is 0 to 9 numbers over there which is

just 10 classes.

So, I will create a separate part of the network which will have a just connection between

100 neurons on to 10 neurons, and this is my final classification, and on the forward pass

what we are going to do is you do a forward pass over this Q to get down your latent

representation from that 100, you do a forward pass over the next fully connected layer

onto 10 neurons over there. So, that is my definition for the classifier which is created

over here, ok.
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Now, if I have my cuda available I can just convert it on to my cuda system over there.

So, that works out over here, and then I start defining my criterion functions. Now here

instead of using binary cross entropy we are going to use the cross-entropy loss because

this is a multi-hot vector which comes out over there and the optimizer which we use for

this purpose is also Adam with it is own specific learning rate ok. Now starts down the

training for a 10 number of Epochs. So, the reason why we need to train is one way in

which you can train this one is you preserve down the encoder part over there and just

update the classifier part.
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So, that is a frozen mechanism of training and doing a domain adaptation.  The other

mechanism of doing is where you have an end to end training. So, we are going to use

the later mechanism in which you do an end to end update of all the weights within your

network including your encoder and then your fully connected network over there. We

train it over a 10 iterations and that is how it keeps on going.

(Refer Slide Time: 15:06)

So, the first part is where you have your data being converted on to a variables or auto

grad variables over there, then you start your training routine, and within your training

routine you are going to 0 down your gradients, and find out your find output over there.

Find out your loss and then do a nabla of loss over there.
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Now, once that is done now you can do your optimizer dot step or which is just a back-

propagation update routine and the weight update equations which come into play. So,

this is for my training part over there, now as I keep on training I also try to look into my

testing mechanism over here and this is for my testing. So, let me just run these rest of

the modules over here. So, I have my classification network defined, I have a type casted

and this is what is printed out and you can pretty much see what it looks like.
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So, this is that first part of it which is my encoder part, and then you have this so, this

part is my encoder part over there, and then I have my classification which is brought

down over here. Then I run my optimizer and my criterion function, and then I can set

my training module running down over there. Now this would not be taking much of a

time because you straight forward are just doing it for 10 number of iterations over there,

and the network which you have as such in your encoder or the decoder is still a much.

Smaller network to go down except for the fact that this encoder is now trained down to

be much more robust to a large number of unknown and unseen samples.

However, the challenge still is that whatever examples you have seen down over there is

being generated out through this adversarial process, they are not that wide because we

could not train it down for a large number of Epochs, we had just trained it down for a

some 50 Epochs over there, or 50 iterations. 

And now within  these  50  Epochs  you do not  tend  to  technically  get  down a  faster

convergence  coming  down.  Anyway,  you  keep  on  trading  that  part  for  a  thousand

iterations in the first part when you are trying to build your adversarial autoencoder, then

the encoder which you build over there is a really robust one. And taking that encoder as

an initial point in order to build your classified is definitely going to work out pretty

good.
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So now this part of my training has run down for 10 number of iterations, and if you look

at it starts with the initial accuracy of a 92.6 percent, and then somewhere around the

tenth epoch it is it is already at an accuracy of 98 percent. Now if you recall back from

your auto encoder  strategies,  where you were just  using an auto encoder  in order  to

classify it  out,  it  was really hard for you to go down to that  accuracy level  of a 98

percent. So, we were with an auto encoder we were somewhere reaching a saturation of

accuracy of 93 to 94 percent.

Now, the moment we have this adversarial mechanism because it starts becoming robust

to all of these unknown examples which it had not seen earlier. So, this performance

actually starts going out in a big way. So, this is one of these beauties of a trying to use

an adversarial network in order to initialize the number of features which you learn and

the gamut of features which you learn are is much more richer and wider in order to train

a  classification  network  over  there.  And  it  is  not  necessary  that  you  need  to  have

synthetic samples generated out over there and then train another network. In fact, the

synthetic sample generating network itself can also be used for training a classifier in it is

own way.

So,  that  is  where  we  come  to  an  end  for  this  particular  lecture  on  adversarial

autoencoders, and trying to use these adversarial mechanisms in order to train a classifier

as well. So, till then we come to an conclusion for this particular week with a generative

models, and next week we are going to enter into another interesting module, which is on

trying to understand and analyze videos which we have not done till  now. So, that is

where your data structure is quite different and the way you would be representing all of

these data in terms of a tensor, and what happens to your channels match numbers and

everything is this an interesting fact to play on. So, stay tuned till the next week and till

then.

Goodbye.


