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So, welcome to today’s lecture. And in the last 2 lectures we have been discussing about

understanding the concept of latent variable, and from there how what is actually a latent

variable which we called on and we took down a simple example of an autoencoder, and

the bottlenecking layer over there, and the output of activations coming out of that as a

latent variable. And subsequently we went on to understanding what is the principle of

generative modeling or the principle of sample generation over there. And a bit of the

math and how can we go on with generating.

So, one example which I took was the mechanism of training an adversarial autoencoder

in which the thing was a twined in process, and the training process over there was pretty

simple as we had explained out.

 (Refer Slide Time: 00:53)

Now you have an encoder decoder network in which we are going to put an input image,

you get an output coming out of it. And on the other part of the Epoch you are going to

put a random number over there, and make a discriminator to do it. So, that is where I

would be starting with this lecture over here to get into more depth of an adversarial



autoencoder and some of the variants. And look into a very practical example of what are

the  kind  of  samples  which  keep  on  now  getting  generated  using  this  kind  of  an

adversarial autoencoder.

So,  we will  be  doing  the  same exercises,  so,  I  will  be  showing  you  a  bit  of  these

examples  over  here  with  trying  to  generate  mnist  like  images,  and  then  based  on

whatever we learn and gather in our experience over here, I want to end up getting into

more adversarial sample generation in the next lab classes, which will be recording the

subsequent ones.
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Now,  one  plausible  solution  to  training  which  we  had  looked  into  on  adversarial

autoencoders was something of this sort. That you have your encoder decoder network

present over here as in an autoencoder you put an image into it, and then you are going to

get an image out over there. So, in within one Epoch if you train this over all the forward

and backward passes, then based on that given one of these images from your validation

set. You are going to get down this sort of a output coming down over here. Or from your

test  set  from your training  set  also you get  down a  similar  kind of  image,  but  then

whatever you find out between this image. And this image or the input and output error is

going to be a nonzero value; this does not look exactly like the image which was given

on the input. So, you have a non-0 error which comes over there and this non 0 error gets



back propagated through this network end to end, and it updates out the weights and that

is how this network is going to come down to a convergence.

Now, what we had on the other side of it? This was a forward pass training just for the

encoder decoder to be able to act as an autoencoder.
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On the other side of the pass what we had was, you generate a random sample from this

2 d Gaussian distribution, and then you have a discriminated network over there. And the

whole job of this discriminated network is to find out whether the, this z or the latent

variable which is a 2-d random number is coming from this distribution over here or was

it coming from an original image. So, that is a real versus fake problem.

Now,  well  the  discriminator  is  making  itself  stronger  and  stronger  to  discriminate

whether it is coming from this part or this part, you also have a part of the error being

transferred through your encoder, and that part of the error is a negative of the efforts of

the discriminator. So, while the discriminator is trying to make itself very strong to find

out whether it is from this source or this source, your encoder is going to make itself ah;

so, there will be another update within this pass with it through your encoder which is

going to make itself get down a value of z which is closer to this one. 

And the very simple way of doing it is that, in case of you are calculating the error of this

discriminator if you negate that error. So, if you make all the reels as false and all the



fakes as real as fake and fake as real, then this encoder is trying to necessarily enforce

that this z is something which should be looking like this,.

So, there is a twin game which plays around over here. So, in the first pass, I am trying to

create an encoder decoder to create generate an image over there, and then in the second

pass what I am trying to do is create a discriminator which can find out whether it is

from a real image or it is from a fake distribution, and I will also update my encoder such

that this z starts looking very much closer to this distribution. So, that is why taking just

a inversion of these labels over here, on to that error and also back propagate. So, in my

second phase of my training my encoder is also getting updated.

Now, once it gets updated in my first Epoch, I am going to start on my second Epoch.

Now in the  second Epoch,  I  am going to  again have  this  encoder  decoder  structure

coming down over here. Now in that encoder decoder structure now remember that what

was the end state of this first pass of training in the earlier  Epoch is no more valid,

because in this second part over there, and again done a back propagation through this

encoder and that had updated the weights of the encoder.

So now in this  network,  I  have the weights of the encoder  which is  updated by the

decoder weight is what is preserved from the previous Epoch over there. So, that will

give me an erroneous result; and that means that this decoder will get updated as well as

the encoder. So, this encoder is trying to force itself such that the z becomes closer to that

2 d Gaussian kind of a random number, and the decoder over here is always going to

force itself such that, whatever is the 2-d random number which comes over here is able

to generate an image which looks pretty much real.

Now, this whole kind of a game playing exercises, in which your discriminator is trying

to make itself very good to discriminate real versus fake the encoder is trying to make

itself  very good to fool  a  discriminator, and generate  a  z  which is  close to  this  2 d

Gaussian over there,  is  as an end what you would get down is  this  encoder  decoder

network which  comes out  over  there,  and the  decoder  part  specifically  is  something

where  provided  you  put  a  random  number  which  is  drawn  from  a  2  d  Gaussian

distribution, you will be able to always generate a real looking image. And that is the

generating principle which comes down.



So, once you have your encoder decoder trained, you have a real image which goes down

it will produce a real looking image on the decoder side of it.
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Now, if I pull out my encoder and just draw a random number distribution from that and

pass it through my decoder. I am again going to get down an image which looks pretty

much real. So, that is the generating principle which comes out over there.
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Now, based on this there have been a lot of exercises which go down and the first and

foremost of it is the standard architecture called as the adversarial autoencoder. So, this is



taken down from the adversarial  autoencoder  people which I  had.  So, excited  in the

reading list in the earlier case as well so, the network over here is your input, which

comes over here is something which looks like this also called as an x.

Now, this 2 layers from my encoder part of the network, this z is my latent variable and

this part is my decoder part of the network. Now hi I train is quite straightforward. So,

once  I  train  this  encoder  decoder  such  that  I  get  this  output.  Then  I  also  train  my

discriminator over here. So, this is my discriminated network which comes here. Now

that  is  supposed  to  find  out  whether  the  sample  is  coming  from  a  random  drawn

distribution or from here.

Now, in a sense while my z is trying to follow down some distribution called as q z, but I

am going to force this via adversarial learning that, this q z now starts mimicking p z

over there. And that is when given any random number taken down from p z, because q z

is going to be equal to or almost same as p z. So, if I draw a random number from p z, I

am going to get down an image coming over here. So, this is a plain straightforward

mechanism of doing an adversarial autoencoder.
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Now what we tried on the experiments was that we took mnist digit recognition point

over there, and using this data set we were trying to. So, you just create an autoencoder

and the adversarial part over there. And now look into this z so; this z for me is basically

a 2 d latent representation.  And now what we saw over there was that each of these



colored clusters which you see, now these clusters belong to so, each color basically

belongs to one class of a number so, 0 to 9 you have 10 classes. So, you see 10 distinct

colors coming down over here.

Now, the z part over there does not in any way have this information on the class level or

anything, they were just digits handwritten digits present over there. But then this cloud

over here is something which looks quite similar to a Gaussian distribution, ok. Now

some part of it is what belongs to each and every number and then that is how it is done

now.

Now, if you look into this other side of it which is also called as the manifold for your

adversarial  autoencoder;  what happens is, that if I am going to sample out from this

region so, I have to 2 numbers, which varies from say somewhere around minus 15 so,

minus 22 plus 20. Rather also minus 22 plus 20, if I start down some random sampling

from these locations from here till here. So, I will add at some intervals fixed intervals I

am going to do. So, if I do a fixed interval of 2. So, my first location over here comes

down as minus 20 minus 20, then the next location over here comes down as say minus

18 minus 20, then like this it keeps on going.

So now for each of these random number if I feed forward that whole thing through my

network so, I am going to get down and image being created, and this is just that matrix

representation of the images. So, in the next lecture wherever you are going to record

down and then show you exactly how this can be implemented on the code side of it. So,

you will be seeing this kind of a matrix of random numbers being generated. Might not

necessarily  be  exactly  looking  like  this  because  you  it  depends  heavily  on  whether

random number whether initialization state of the neural network was and based on that

you will get down what this appearance model keeps on changingly, ok.
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Now there is another version of it, which is called as an adversarial autoencoder with

regularization. So, what this does is another interesting aspect that you now start also

including another variable which is called as the class variable over there. So, what I

exactly want to do over here is that for each different class, I want to have a different

kind of say random number being generated over there, ok, or something from a different

distribution.

So, this p z which I am drawing over here is not necessarily from a uniform Gaussian

distribution, but then this p z is from either one of them. So, whenever I am drawing

from one particular cluster, I am also going to put down this extra information as to what

is that cluster number. And each cluster is going to be one class itself over there. So,

what this will help me in doing if we go back to our earlier example where did you

wanted  to  have  a  model  for  generating  cats,  dogs,  and everything separately, now I

should be getting an option of specifying; like, whether I want to generate a cat or I want

to generate a dog. So, that is the random numbers also get started pooling down from that

distribution over there.

So, this is just extra information. So, what happens is you have a random number being

drawn and also this class level information which gets passed on to this discriminator.

Now nonetheless on your autoencoder part, when you have your encoder and decoder

you  do  not  need  to  pass  this  class  information  in  any  way  that  does  not  play  any

significant role over there. Now having trained this whole network in this mechanism



what you can see is that if I try sampling out these random numbers following a Swiss

roll distribution pattern.
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Then you see that there are different classes of numbers which come down, and then if

you unpooled it out you would see these different numbers being generated.

Now, interestingly what you see is that you can actually choose, what is my number to be

generated, and then it will be taking out a random value from that location to generate a

number. So, that is that is the interesting part over that there.

Now, you have a control over the class of the model which you would like to generate or

the class of the image, which you would like to generate which as such was not possible

with the plain vanilla version of this adversarial autoencoder. So, this comes in much

more handy over there.
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Now there is also something which is called as a supervised adversarial autoencoder. So,

in case of a supervised adversarial  autoencoder where the difference goes is that this

class level information is not given down to this discriminative, but that is something

which is  passed on to  my decoder  part  over  here,  ah.  So,  it  may be my class  level

information, or it may be another information from a possible generation model.

So, it is something like I want to have say sketches of dogs generated and not real like

images of dogs. So, I will be training these networks in an adversarial mechanism, where

whenever I am putting down real images of dogs I have one of these one hot vector set,

when I am putting in a sketch images of dogs in order to simulate it I put down the

second hot vector live over there. So, this way I can actually choose I still  pick up a

random value, but I choose what is my kind of a behavioral pattern over there, or maybe

the context in which whether it is a sketch of a dog or it is a real photograph image of a

dog to be taken down.
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Now using that kind of an example, what we could see is that you can do a cross domain

generation of that. So, here the example in this paper which they had taken was you

could take these handwritten digits from say 0 to 9, and then you have this street view

numbers taken down over that. Now make a marker point that these handwritten digits

are actual  handwritten  digits  on mnist,  but  then these numbers on street  view house

numbers is something which is generated. So, given one of these handwritten digits over

that you would find out the z representation coming over here which is called as a style,

and then you choose one of these hot representation. So, saying that I want to generate a

street view house number based on this latent z representation, or I want to generates a

handwritten number or maybe a printed character any of these.

Now, based on that I will be able to generate it out so, even if you do not have this house

number  present  over  there,  now  the  advantage  is  that  you  can  give  the  latent

representation for that and corresponding to that there will be something on the street

view  house  number  equivalent  which  is  getting  generated  so,  this  is  cross  domain

generation. So, some other examples are like you give down sketch of images and you

can generate paintings out of it. You give down sketches, and you can generate frontal

face camera images or portrait images out over there. So, this has immense applications

actually in order to find it out.

 (Refer Slide Time: 14:50)



Now one of these examples is from one of our prior work. So, this is work with we just

have finished off an, and have it out for publication this year. So, the whole idea was we

wanted to generate some of these kind of images which are ultrasound, and this is called

as intravascular ultrasound images. So, these are these real ultrasound images which are

present over there and we wanted to have a mechanism of simulating these ultrasound

images. So, the idea was that if you have a phantom a tissue phantom over there which

would more or less give you an anatomical structure, based on what tissues are present

over there 

Now, based on this anatomic can I be able to generate this one. So, that would mean that

if  I  have  a  hand  drawn sketch  of  certain  anatomy  is  given,  then  can  I  generate  an

ultrasound image what will be corresponding to that. Now this would have good use in

teaching  in  medical  education.  You  can  also  have  a  lot  of  these  synthetic  images

generated for really say strengthening your data set over there, and all of these purposes.

So, this is what we had solved over here using a 2-stage generator. So, in which one of

these stages was where you had to map out the objective was just to look into the average

intensities and try to map it up, and the second stage was where we had to model out the

point spread function of the PSF over then and then find out for.

So, though cost functions and everything were appropriately laid out. So, this has now

been published out in one of these conferences, and you can have a look through the

paper which is their own archive. Now if you look through how realistic it has been able

to do the whole concept is still basically rooted on what we had done in the earlier cases.
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And here this is a very typical example. So, if you look at the image on your left, then

this is an image which is basically a simulated version, the image on the right is a real

version. And now the anatomical map and everything was pretty much similar, and then

it is it is really hard to find it or because there are these bright spots over here as well as

over here which are certain anatomical markers. These dark spots over here also residue,

residuals of shadowing due to a plaque formation within this hatchery, and they pretty

much mimic each other to the closest form over there.

So, that is that is a really interesting problem over here, like while this one is generated

this one is real it becomes really hard typically to do and over a experiment random for

called as visual turing test in which you provide this pair of images to experts, who have

been using these images and ask them identify which one is real. So, it is always a pair,

and one is real and one is fake always, and you just your task is just to identify which

one is real over there. So, this works are pretty good, because the results over there I just

find 50 percent accurate, which meant that half of the time the fake image was always

marked by this expert as a real image over there.
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So, that is where we come to an end with this one. And so, you have your standard take

home  message  which  has  these  papers  to  refer  down  to  and  then  this  adversarial

autoencoder  paper  is  really  nice  to  go  around  with,  if  you  want  to  look  more  into

advanced parts of these modelling,  then you can have a look into the earlier referred

paper on this intravascular ultrasound generation from us as well.

So,  with  that  we  come  to  an  end  with  trying  to  understand  the  basic  concepts  of

adversarial autoencoder in the next class we will be going through the lab session on how

to create an adversarial autoencoder, and how the generative principle over there will for.

So, with then we come an end to this lecture and stay tuned for the next ones to come up.


