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Welcome to this week series. And then this is where we get into a real interesting aspect

about deep neural networks and might have heard about some of these things making a

real buzzword called as gains or generative adversarial networks. Now, where it comes

down is this interesting aspect about generation ok, and that has a lot of its basis quite

rooted into our concepts of autoencoders.

Now, that is where the title for today’s talk is given down as autoencoders and latent

spaces.  And  we  try  to  understand;  what  is  the  intermingling  dependency  between

autoencoders and latent spaces and that will lay down a very good foundation into our

understandings of how a generative model actually works out ok. 

Now, I would be revising a bit of the concepts of auto encoders in terms of trying to

again do the linear algebra and the math around with an autoencoder, and then get into

the concept of what is called as stacking of trained coders. And from there we will now

so you had already  done these  stacked auto  encoders.  And there  were two different

stacking strategies which we had studied one of the stacking strategies was where you

had a layer wise pre training, so that was a ladder kind of architecture in which you have

one hidden layer at a time which is added down to your network. And as you go along

the depth and that is also increasing your performance over there as we say. 

Now, there was another mechanism in which what you could do is you could train the

encoder part and train the decoder part together, and then chop of the decoder part and

then just place down your final classification layer over there. Now, this is the kind of a

network which we are going to make use of a fixed end coder and a fixed decoder, and

how it goes around with that one. So, without much of a delay let us get into exactly

what I am going to speak on with that.



(Refer Slide Time: 02:07)

So, I will be briefly revising the concept of auto encoders and then entering into what is

the definition of a latent space. Now, I have been speaking about this latent variable or

lot of times and if you recall from your autoencoder lectures, and there was a variable

called as z which was called as a latent variable. And this latent variable is what was

being referred incrementally over there. So, for each of these hidden layers over there

whatever was the output of the hidden layer is what is called as a latent variable.

So, you have input from the previous layer and then your basic multiplications and then

convolutions or full connections over here was a tensor multiplication with the weights

present in that particular layer. And then you had the output coming out of that layer and

the output from this layer is what is called as the latent space. Now, here we are going to

revise into what is called as the latent space of autoencoder and what is the distribution

of the statistics around those latent space.

Now, once you enter into the statistics that is where the interesting parts starts coming

into it, and then I enter into the generative principle. So, this is where it we come to an

end today in terms of just understanding where the generative principle would go. And

then in the next lecture, I would be coming down into the math part of how to impose

this statistics over there, and how this generative principle is actually going to work for

each of them. So, we will start initially with very simple mechanism of generation of



different examples and then from there onto images and how it goes and so on and so

forth.

(Refer Slide Time: 03:33)

So, now if you get back into your basic understanding of an autoencoder, so what it said

was that say I have coordinate location x and a small patch p which is centered at that

coordinate location x. If I take each of these pixels from this patch, so that is going to

consist of 1, 1 neuron over there and the input to this neuron is what gets into it. Now, as

it  gets  into  this  one  then  you  have  your  weighted  connection  and  you  have  your

intermediate hidden layer representation over there.

Now, on the autoencoder part, what happens is that whatever comes out of this hidden

layer is what we also call it as a latent space. Now that gets again fully connected and

then you have this reconstruction happening over here. Now, for each of these times you

have the bias, which is also added down, and this is independent over there. So, the bias

the except for like really getting into the standards of how this optimizations also over

there, how your error is coming down and the learning rules over there, this bias does not

have any other significant role. So, it does not skew you down the nature of the latent

space, neither does it even in anyway hampered down the nature of the input over there. 

Now, how it went was quite clear that if you have input p over here which is given down

to these neurons. Then this is this y is what would look as the output from this hidden

layer; and provided that you do not have some sort of a non-linearity over here and that



is what we are imposing over here. So, there is no tan hyperbolic or say sigmoid kind of

a non-linearity given down, it is just a plain simple linear equation. So, you have just a

tensor product between two tensors coming into it.

Now, from here you would be able to reconstruct your output patch and that is p hat your

reconstructed version. So, this is also a simple tensor product which comes out over here.

Now, what we said is that we would be taking into account something called as a cost

function. So, this cost function is what is called as j omega J of W and this was just my

Euclidean distance and. The whole idea was that I would like to minimize this Euclidean

distance over all the possible samples n. So, if I have some n number of images which

come on my input over here, I will be able to get one, one corresponding reconstructed

image over there.

Then over all the images present over there, I am going to take a sum total of what is this

absolute value of difference. And this absolute sum of absolute value of these differences

over all the n images present in my corpus should actually be as minimum as possible.

And  now  since  you  have  this  Euclidean  distance  being  coming  into  place.  So,  the

Euclidean distance always being a positive number. So, this sum if this has to come

down to a minimum that can come down to a 0 and nothing else. And what that would

essentially also impose is that since each is a positive number a number which can be

just greater than 0, but never a negative.

So, this series summation will only be 0 only if individual component over there is 0. If

any one of these images has a very high error, it will still not be coming down to the

desirable quantity over there, so that was my way of actually establishing whether my

network is properly done and then in order to get down my weights which are my only

free parameters over there. So, my ws and my bs which are biases; and w prime which

are the weights which connect on hidden layer to the output. And b dashed which is my

connection between the bias to the output over there.

Now, this  thing  in  order  for  this  whole  thing  to  be  optimized  over  there,  I  need to

minimize this cost function. And the whole idea behind minimizing this cost function

was that we employ some kind of a mechanism in order to minimize the cost function.

And as we are able to employ this mechanism to minimize the cost function, we would

be having a network where given an image on the input side, now you can get the same



kind of an image on the output side. And in the whole process, we are basically learning

of these features which represent the image in terms of these fits ws ok. Now, this was

one part of it.

Then you had learnt out another interesting use case for these kind of a network and that

was with a denoising auto encoder. So, the whole idea was that I give a noisy image to

the input and try to enforce the output to be as close as possible to a clear image. And the

major advantage for this kind of a network is that you can start denoising your images,

you can do a noise removal of your images using this kind of a network; now that is well

and good and a pretty standard which works out. Now, the point is it possible in some

way to generate images as well and that is the question for any kind of a generative

model.

So, if I have these intermediate hidden layers outputs, somehow fed down over here, then

can I still end up generating images, so that is that is what we are going to solve out in

today’s example.

(Refer Slide Time: 08:17)

So, let us take this standard example of an stacked autoencoder. So, what you basically

had was given an input x so this was my image, you have one hidden layer via your

weight w 1 then you had your second hidden layer your way w 2. And then the output of

the second hidden layer is what is called as your latent variable z ok.



Now, on the this part over here is what constitutes your encoder, then the next part over

here where you are going to reconstruct h 1 dashed from h 2 is where your decoder

starts.  And now from h 1 dashed you are going to recover  your x hat.  So,  x hat  is

basically the recovered of the deconstructed version over there, and this blocks in violet

and blue are the ones which constitute your decoder. And what we have in this whole

process is that this can be solved out only if you have this kind of a arg minimization

principle taking place.

So, this was my straightforward mechanism for a autoencoder with multiple layers. Now,

in the earlier case you had seen down only autoencoder with just one hidden layer and

this is you have an autoencoder with multiple hidden layers.

(Refer Slide Time: 09:24)

Now, what comes out is quite interesting. So, if I have say only this part of it where I

have an input and it goes down to my first hidden layer then that goes down to your

second hidden layer. And now what I do is I can keep on reconstructing this whole thing,

but now I look at tapping out this intermediate from my second hidden layer. This, so this

tapped  out  formed  from my  second  hidden  layer;  so  the  output  not  the  weights  or

anything the output given an input image x, what is my output which is coming from my

second hidden layer.

So, the output from the second hidden layer is what is known as z 2. And if I have a non-

linearity in place then this is a kind of an equation which describes. So, the first point is a



tensor product between your input and the weight, weight down by your non-linearity,

and then you have a tensor product of this whole thing with the second layers weight

over there, and this will  be weighted by your non-linearity  over here. So, this is my

output which comes down from h 2 and then known as it.

Now, as this keeps on going over here so let us have a look at what will happen on an

image-to-image basis over here and that is to look into how will this z be impacted. Now,

if I assume that this h 2 just has two neurons so it means my z over here basically has

two dimensions. So, if h 2 is to by z is two-dimensional thing. And now it  becomes

easier. So, let us let us try to visualize it on a two-dimensional plane of picture.

So, if I have z which is broken down into two component axis z 1 and z 2 ok, now for

one given image, I will get down a point over there for my second image I get down a

point and so on and so forth it keeps on going for all the other images. So, for every

image, I am going to get a point in this coordinate space of z 1 and z 2 available over

here. 

Now, as I keep on going down till y nth image, I will be getting down this point located

corresponding to my nth image. Now, essentially if you look back into this concept, then

what this would mean is that for every single image I can encode via this pipeline and get

a two-dimensional representation if I have a two-dimensional hidden latent variable over

here.  In  case  I  do  not  have  a  two-dimensional  latent  variable,  then  whatever  is  the

dimensionality of written variable on that space I am going to get a point. So, every

image now basically boils down to one single point in my space, now that works out

pretty fine.

Now, if that is the case what I can essentially do is I can pull out a point from this space

and feed it to this decoder, and then I will be able to even reconstruct my image that

should be that straightforward. Now, apparently what turns out is that this space as such

on which this falls down is something which is really hard to sample because you can

pretty much see that these are scattered out over here. So, for any kind of a practical

example also it gets pretty much scattered around over there. So, it is not something that

you can easily pull out a valid representation.

Now, if you get back onto this space to look into it what they would see is that you had

this say you had this point which was corresponding to image one. Now, if I point and



then you had this other point which is over here corresponding to say image n. Now, if I

pull out any random point which is located between these two locations, my assumption

would be it would be giving an image. But then, it is not necessary that it would always

give you a meaningful image which meant that something which looked like an image I

mean it might be something which is totally unrealistic. So, say a sun in the middle of the

ocean or say a moon within a sun or a cat with eight legs. So, it can even end up with

those kinds of weird looking manifestations over there.

Now, the whole point is that for any kind of this kind of a network wherever you can

give a random number, it is going to generate you an image at the end of the day. The

only point is whether the image has certain meaning and sense to carried on and whether

it looks like a photorealistic or a real image or not is definitely a question which we need

to  solve  over  there.  So,  this  whole  aspect  of  adversarial  modeling  and  generative

principle is to look into whether whatever is generated on the output side, whether that

makes sense and it is good enough to be as if you vocal as a real image.

(Refer Slide Time: 13:39)

. So, that is where the statistics of latent space really comes into play. So, say I have the

same kind of an example to access over here there is two dimensions on my latent space.

And then for every image I am going to get down a coordinate point over there. Now, it

is it is great you know now this comes down from one of my networks where say all my

points that my blue. So, I can call this as a blue network.



Now, let me create a separate other network with initial random selections of weights

over there ok. Now, if I create another network which I call as red network over that. So,

I will have my z 1 z 2 distributed something of this sort. Now, for every single image, it

is going to give me another kind of a distribution.

Now, if you look into this kind of a form, what you would see is that the distribution of

these latent points in this second network is something which is more coherent.  And

there  is  a  high  chance  that  there  is  some valid  point  which  is  present  between two

different  points  which  you  have  created  over  there  or  in  a  sense  that  these  latent

representations tend to cluster. And more generally what you can also say is that the

density is somewhat concentrated around this point which you can call  as the cluster

centroid to a certain extent.

Whereas, over here in the first case of the blue network, you do not see such kind of a

clustering; and as a result what happens is if you are trying to extrapolate it out say if

these are the boundaries of my points present over here, these are the boundaries of my

distribution. Then I can say that maybe there is a point valid in between which would

also give me a valid image now that is not always true. Whereas, over here what you can

see is that this has a much more cohort and a concise boundary. This actually forms

down a much clustered convex representation; whereas, this one does not fond. So, this

has some sort of a non convex representation which comes out.

So, most generally you would see that all the valid points are something which exists

over here and may not be over here. So, if you are going from this point to this point, you

are  just  outside  the  set.  And  that  just  violates  the  whole  principle  of  being  able  to

generate  any particular  image given down a particular  given that  you take a random

value as the input over there.
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Now doing that where it  comes off interesting point is that I can have these kind of

clustered points over here. So, this is taken down from a very classic example. Now, in

the earlier case what we said is that if your points are more or less scattered around over

there, then it becomes problematic to a really find it or because you will have to choose

from these points only in order to generate anyways. If you choose you choose a value of

z 1 and z 2 from any other location, so if I am choosing it from somewhere in between

over here and not exactly from this periphery this ring like periphery of points which are

scattered over here. Then there is a high chance that I will get down an error and some

weird looking thing which is not even close to an natural image over there. 

Now, on the other side, I have this close cohort of clusters over here which is supposed to

work out pretty fine. Now, there is actually a very easy way of transforming any kind of

this kind of a cohort of clusters onto these ring like arrangements over there or a non

convex. As well as any kind of a non convex arrangement can not necessarily always any

kind of a, but to a certain extent a lot of these kind of non convex arrangements can

actually be made to formed on these kind of clusters over here.

So, as an example say if I have this kind of a transformation where my z is this variable

over here, and my g is this variable over here then I can relate down any point on this

space to a point over here and vice versa. So, this makes it really interesting that at

certain  kind of geometric  transformations,  you can actually  map down these kind of



scattered  around  points  to  form  a  very  convex  set.  And  this  has  a  very  important

implication  because the geometric  transformations  can also be modeled down with a

neural network itself and that comes as one of the major saviors over here.

(Refer Slide Time: 17:38)

. So, as a result what would happen is if I am looking at a generative principle, then what

comes out is that in general you had these encoder part over there. And now you are

using only this encoder part in order to solve your problems. Now, what I would do is let

us get down this decoder completed. So, you have your encoder and decoder taken down.

Now, if I have this kind of a 2D sampling out space, and from there I decide that I will

just neglect the decoder part and have a sorry neglect the encoder part, and just have this

decoder part.
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So, now what I can do is I take a random sample from any of these points over here, then

I will be able to generate any kind of an image over there so that is the whole aspect over

here which comes into my generative principle. So, what essentially you do is you are

trying to build an encoder decoder network in a way such that these latent variables over

there follows some sort of a distribution. Now, what that would allow is that you can

randomly pluck up any number from a distribution it is easier.

Now, every single image on your training set would be mapping down to one unique

point on your latent space. And now if I am picking up exactly that point, I am going to

reconstruct this image, but if I pick up a point within that cluster which is not exactly a

point which was present on my training set, then I am going to pick up points which are

quite different. Now, whatever images will be created out over here on the other side of

it, we will have newer kind of a manifestation. So, they would not look like exactly the

same image which was there in your training set maybe they will have similar content,

they will have similar look and feel over there, but there will be certain subtle variations.

And what this would allow me to do is on a bigger side generate a lot and lot more of

synthetic datasets coming down.

As well  as  now one you can do is  you can generate  of  synthetic  datasets  use these

synthetic datasets in order to train your rest of the computer vision algorithms. But look

at the other side of it if a model is able to generate these synthetic datasets very easily by



pulling  a  random number from a distribution,  then the encoder  and decoder  and the

features which these models have learnt in the encoder part as well as in the decoder part,

they are robust enough for any kind of a sample which it has not seen or what can also be

called as an adversarial sample. A sample which was not seen by the network during the

training and it can still identify this one. So, the generalizability of these networks which

starts becoming much higher and higher.

So, this is the whole concept of generative adversarial learning or generally kind models

with  adversarial  learning  and  there  is  a  difference  between  when  it  is  called  as  an

adversarial model, when it is not an adversarial learning model, so that there is a learning

paradigm which comes into play. And this we will be doing in the subsequent lectures.

But overall the idea is that if you are able to create a network where by pulling in these

latent variables ran as a random number from a particular distribution, you are able to

generate and synthesize an image then that works out pretty fine. So, that is the whole

concept of a generative modeling.
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So, now finally, if you want to read more about it, then the best place to go around is this

Tutorial on Variational Autoencoders by Carl Doersch. And also you need to go through

this particular one on adversarial autoencoders by good fellow and his team over there.

Now, this particular paper on adversarial auto encoders is what we will be studying in

detail as well and as one of the best treaties on this particular field.



So, till then stay tuned. And we come back in the next lecture with more amount of the

mathematical fundamentals of how to get down these adversarial and generative models

working down.

So, till then thanks.


