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Welcome. Today, we are going to do our exercise on semantic segmentation now the

network which. So, we had basically worked out on two different networks one of them

was called as U-Net, and the other one was called a SegNet. Now, while in U-Net you do

recall  that  one of  the  major  advantages  was that  you had some sort  of  a  VGA like

structure of down sampling. So, there were consecutive blocks of convolution, and then

you  had  a  max  pooling  block  which  was  down  sampling  it  and  then  this  kept  on

repeating over the process.

And then you could transfer all  of these last  layers of features and appended on the

decoder pathway over there. On the other side, you had SegNet in which there was a any

such sort of appending of these feature layers, but then it was again similar to a vgg like

structure I said for the fact that in the decoder side you were when trying to do a max

unpooling equivalent of it.

So, it was not just a simple interpolation which was has in the case of a U-Net, but here

you actually could do a index passing based interpolation or which was the location from

where exactly you are pooling was happening on the encoder and that was passed down

onto your decoder side over there in order to get down a much higher resolution version

of the image so that on one side it helped you do actually we create out high frequency

components in a much better way, then you would have otherwise done when trying to

use a simple nearest neighbor or a bilinear kind of an interpolation.

Now, here today what we are going to do is take up an example problem, and we are not

taking up any of these key t data set kind of problems where you have hand annotated

labels  over  camera  images  or  there  are  videos  over  which  say  roads,  cars,  trees,

footpaths,  these  things  are  annotated,  but  we  are  taking  down  the  problem  from

something which we had solved out in the earlier lectures, and this is basically on vessel

detection.



So, there are class of images called as retinal images and these are when you use an

ophthalmoscope.  So,  these  are  predominantly  medical  grade  images.  So,  an

ophthalmoscope is used by a retinal physician in order to look into their retina. So, which

is the photo sensory layer and then the rear part of your eye. Now, over there are multiple

blood vessels which actually circulate blood through your retina and that that is the only

source of your nutritioning of the retina going down.

Now, in a certain class of problems, there are new kind of diseases or a lesions or some

sort of car kind of things which appear start appearing on the retina, and this can appear

typically if you are diabetic or you are old age, and some of these are really age related.

Now, the distance of this location of this lesion from the retina is something which is

very crucial and it is typically expected that it is really far off from the retina. Now, for

that you would need these vessels to be discriminated out quite perfectly. And then this

whole problem which we are solving over here today is of vessel segmentation.

(Refer Slide Time: 03:08)

So,  we  are  solving  out  vessel  segmentation  in  these  retinal  images  as  sematic

segmentation problem. The particular data set which we are using is called as drive or the

digital retinal images for vessel extraction. Now, this is an openly available data set you

can just click go over there and register sign up and you would get down the data. Now,

what it has is there are two different sets over there; one is called as the training set and

other is called as a testing set.



In the training set, you have 20 images you have 20 images in the testing set itself. Now

all the images be it on training set or on the testing set and annotated by two different

radiologists; so two different ophthalmologist ophthalmic physicians, who have actually

marked down where these vessels are present down and then that acts as a ground truth.

Now, our purpose is that we are trying to solve it as a semantic segmentation problem.

So, given RGB image using a convolutional  segmentation mechanism over there,  we

would like to find out the different classes which belong to so each pixel belongs to

which of these classes. So, there is a pix there is a class annotation coming down for each

of these pixels over there.

(Refer Slide Time: 04:19)

So, let us start and then go through what is done over there. So, the initial part is quite

simple, you have your standard header which is similar to what we have been using;

otherwise and then there is no extra additions which comes down over there.



(Refer Slide Time: 04:26)

Now, for your data part over there, so since we have two different data sets one is called

as  the  training  dataset  and  other  is  a  test  dataset.  So,  we  make  two  different  path

allocations over there. One is for your train directory when you have to all your training

images; and the other one is for your testing directly when you are testing images are

present.
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Now, once you have that one next what we end up doing is something like this that I am

going to take these images from my train path and then so one simple way over here is

just to show it to you.

(Refer Slide Time: 04:58)

So, here what we do is say this is one of the sample images which you have on your

training  site.  So,  the RGB image standard which is  given down then you have your

ground truth. So, whatever is present in white is basically the vessels over there. Now, if

you carefully look into this image, what you would see down is that there is a part of this

image which is black, and the whole reason is because your eye circular the retina is also

circular.

So, whenever it images with a circular aperture, you are going to get down a circular

zone over there. Whereas, your sensors over there they are typically rectangular in shape.

So, this rest of these parts which is not part of the circle is what is masked out as a black

mask over there, so that is what we see in this mask as well.
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So, what you typically get is this image plus these ground truth and the mask given down

together. Now, this is from one of these images which is image number 21 from my

training data set. Now, over here what we end up doing now is that we try to create 30

different manifestations of from each of these image, so that way I will be able to really

polish up and get down a larger data size coming down as compared to just being limited

to only 20 images because that is pretty small.

Now, for that the initial part is to define a blank tensor over there and the way we are

defining it down as that since I am picking up 30 sample patches and these are not small

size patches, but these are rather big size patches over there. And I am going to pick

down 30 sample patches per image and there are 20 images.
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So, in total I will be getting down 600 such sample patches coming to me each is an

RGB image. So, you have three channels over here. And then in order to be conformal to

image net like architectures, so it is not mandatory that you need to be conformal at least

for semantic segmentation purposes over here. So, we are just taking down it 224 cross

224 and then sticking down over there ok.

Now, on my training labels, what I have I have similar number of labels. So, I will have

600 label maps generated down with each for each of these training images which I am

taking down. Now, if you look down I do not actu actually have a channel coefficient

over  here.  Now,  looking  back  into  when  we  were  learning  down  about  semantic

segmentation, so the whole point was that given an RGB image over there on the output

side you are going to get down one channel which is corresponding to each class over

there.

However, the mechanism of training this thing is either with say negative log likelihood

loss or with a binary cross entropy kind of a criterias. In those cases while your network

is still  going to generate out these number of slices or the number of channels which

correspond to each of these classes. But in your training in the data ground truth data

which you are passing down for training over there that data over there is just going to

have these particular channel numbers or the class number given down. So, if it is class

number zero that  corresponds to channel  zero and that  will  be of high;  if  it  is  class



number one then it  corresponds to  channel  number one which will  have the highest

probability over there. So, for that reason, we just pass down 3d matrix 3d tenser over

there where each element of the tensile is a matrix of 224 cross 224.

Now, on my testing side over there what I choose to do is we do not take any more

patching around the whole image, but we pass down the whole image as it is in a size of

224 cross 224. So, there are 20 images on my testing side and corresponding to each of

them I have my testing labels also defined. This helps me in finding out my accuracy as

well as my loss calculation on the validation part of my code.
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Now, that we end up doing this one the first part is basically take open up one of these

images from my training data set. Now, once I have this a image taken down over there

the next part is to keep on generating these labels over there.
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Now, what we end up doing is if it is it belongs to the background which is over here. So,

if it is in the mask zone and if this is black, then we just retain that as class 0. If I have

any of these regions present over here which are my blood vessels, then I put them as

class one and if I have this background over here then I make that as class 2. So, it is 0,

1, 2 or 3 class classification problem which I have and that label is what is associated

with each pixel coming down over there. So, now that is what is effectively done over

here. So, you have your annotation per pixel for class levels also given now.

Now, what we do is we randomly pull out certain chunks over there to get down some

random cropped out regions ok. So, this is what we initiate over here. And we choose

such thirty random locations. So, what its effe essentially doing is you have a large size

image, but you want to chunk out only 224 cross 224 sized blocks over there.

Now, what we are doing is we are randomly generating some x and y indices size that I

can have these as random positions over there, and I can chunk out 224 cross 224 sized

blocks out of it. And this just helps me augment out my data set without incorporating

any without undergoing any changes sort of a bias towards a particular region or location

over there.
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Now, once that is done we have it packed up in our training data set format and then. So,

we take up these training data over there, and then this is the packing which keeps on

going down over there. Now, once this whole packing is done, we pack down both the

training data which is the image as well as the training labels over there. So, each has to

be in the same format packed up.

(Refer Slide Time: 10:44)

Now, once that packing is done, so you can have a look into what it looks like. So, you

have your 600 cross 3 cross 224 cross 224 which is your input data tensor size you have



600 cross 224 cross 224 which is your class tensor size, and then you have your test data

over there as well.

(Refer Slide Time: 11:02)

Now, once we have this we just invoke our training and testing data loaders over there,

and we choose to have a batch size of ten. Now, keep one thing in mind that here this

process is obviously, memory intensive because you are not doing you do not have a

neural  network which  is  just  taking an image it  comes down to some linear  neuron

representation over there.

So, in this case because it is narrowing down in its representation form, so it is going to

use  lesser  amount  of  operational  memory.  However,  here  you  are  almost  going  to

continue in the same way or sometimes it goes down and then in the decoder part it again

starts  moving  up  in  that  way  these  kind  of  networks  do  require  more  amount  of

operational memory, they are more data intensive as such going down. So, the batch size

is typically need to be brought down to a lesser number. Next, we check out our same old

trick over there to find out if GPU is available, and if cuda is ready then we can just

export out onto the GPU for faster execution.
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Now, here we start by defining our network. Now, this network which we use is not

exactly the SegNet, but there is a model which is loosely inspired by SegNet and it is a

much simpler model and it is a trivial model. Now, one of the reasons why we chose to

go with a trivial model is that in order to one point is in order to avoid overfitting. If you

have large number of parameters and lesser amount of training data, you are prone to

overfit over the model.

The next important aspect which comes out over here is that the total number of classes

which I am taking on the output is 3 it is a really less number of classes coming down.

So, there might possibly not be too many different kind of manifestations which it has to

learn up and that is one of the reasons why we are just taking down to this kind of a very

simple baseline model of a segmentation convolutional semantic segmentation network.

So, what we have in this network is pretty simple, I have a convolution layer where the

kernel sizes are 3 cross 3, and I have 64 such kernels taken down for my work.

Now, I do convolution with the stride of one and a padding of one which necessarily

means that whatever was the size of my x y dimension of my input image. After this

convolution, I am going to retain the same x y dimension over there, because I am not

changing down either the stride or the padding given over here. The next point is the we

put in place a non-linearity, and this is a rectified linear unit which is put in place for a

non-linearity to come down.



Following this, we have a max pooling of 2 cross 2 kernel size with a stride of two. So,

this is a 2 cross 2 max pooling which means that the x and y dimensions are going to get

reduced to half of it. Now, this part serves as the encoder part over there. Now, one thing

which we do extra is that we set in this extra argument over here which is called as return

indices equal to true. And one of the reasons for doing these return indices is equal to

true is that we need to have a trace of where all these indices were present in order to do

our unspooling. It was the logic for a SegNet like behavior was that you are not going to

just do a bilinear interpolation or a nearest neighbor interpolation in order to scale it up

during the unpooling there, but you will do a guided sort of a unpooling, so which meant

that you needed to have an index transfer from your encoder to your decoder side as

well.

Now, in your decoder side what you have is, first you have a unpooling over there which

skills it up, now once you have that unpooling after that you have your convolution a 2D

convolution coming down. So, this 2D convolutions job is to convert down 64 channels

onto 3 channels. Now, this is three channels is not corresponding to the image channels

over there, but this is because you have 3 different classes.

Now, if you took down 6 classes then you would have 6 channels, if you take down 10

classes, then you have 10 channels over here the convolutions are still with the kernel

size of 3 plus 3 with a stride of one and a padding of one which meant that the same size

xy size is preserve. Now, if we look into this kind of a network, so if my input is 3 cross

224 cross 224, then after this before this max pooling just after the ReLu, it is going to be

64 cross 224 cross 224.

After this max pooling, it is going to be 64 cross 112 cross 112. Now, from here when I

do an max unpooling over there, so that is going to take in 64 cross 112 cross 112, and

make it up to 64 cross 224 cross 224. Then I have this convolution running down and

this  is  going  to  return  me  a  3  cross  224  cross  224  where  each  of  these  channel

corresponds to one of the classes to which a pixel can belong to.
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Next, we have the forward definition for this network return term which is plain and

straight. So, what you do is you take an input over there, you pass it through the first

convolution layer, then pass it through the relu after you have passed it through the relu

you are going to pass it  through the max pooling.  On the max pooling side,  we are

supposed to take down these indices for the pooling indices as well, so that we can pass

it down to the unpooling layer. So, that is this id x 1 which is taken up 

Next when the max unpooling layer comes into play, you pass down the output from the

previous layer which is x as well as these indices as well. Now, you have the unpooled

version coming up over here and then you do your second convolution over here which

is with the block called as conv 1 d so that is straightforward a very simple SegNet like

architecture which has just one convolution layer one max pooling, one max unpooling

another convolution.

Now, you can definitely make these instead of one single convolution layer you can have

a band of convolution and that depends on what is the granularity of the problem you are

trying to look at, and what are the different classes you are trying to solve. If it is just a

plain simple three class which is like apparently visually even very distinct from each

other, then it does not make sense to even go down for more number of kernels or even

depth encoding of these kernels you can pretty much do it with a very shallow network

as we are doing over here.
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The  next  part  is  to  work  on  the  initialization  of  this  model  and  that  is  pretty

straightforward. So, you just define a variable over here called as net which is equal to

SegNet, and SegNet is the model which is defined by this function created over here.

And then if there is a GPU then con just convert it onto cuda. Now, the next part is to

define  these  two important  parts;  one  is  your  criterion  function,  another  or  the  loss

function another is your optimizer. So, for loss we are going to use classification loss for

negative log likelihood.

Now, one thing you need to remember is that the output which it is producing is no more

a 1d tensor, but it is a 2d tensor. So, we need to use a negative log likelihood loss which

is going to calculate itself on a per pixel basis or a per neuron output over this 2 d matrix.

And for that there is a separate kind of a function which is called as a nll loss 2d. So, this

is just to give down that whatever comes out on your output side you are just going to

operate it on the 2d space. And it is 2d tensor and not a d tensor which comes out if you

were using a classification model over there ok. Now, you have your optimizer and we

choose to use Adam as our optimizer over here.
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Now, next comes down my training part over there. Now, we decided to train it just for

100 epochs as such and then we have our stand up routine written down for training.

Now, what we do is if I have my GPU available then inputs and labels both are converted

on to variables and type casted as cuda. So, these labels are basically the outputs over

there on the training data and the input is this image which goes on the input side over

there. Now, if I do not have a GPU available then the typecasting is not done, but you

still need to convert it onto an auto grade variable for the auto grade solver to come into

play.
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Next you do a feed forward and get down your output. So, this output is a three channel

output over there of the same size as that of the input image. So, here it is going to stay

down to 224 cross 224. Then you have your loss being calculated over here. Now, in case

of your loss what you need to do is the outputs over there since I am using a negative log

likelihood lost function. So, I need to have a log softmax calculate it over the output so

that is what is taken care and you also pass down your labels so which particular pixel is

or which particular class is denoting a particular pixel over there.

Next, we zero down our gradients in the optimizer and then you do a lost dot backward

or the back propagation operation over the loss which is nabla of loss or del del w or gw

is what is calculated over there. Now, this part is the first derivative of the loss function,

then you have your rest of the network whose weights are updated, following the update

rule and that is with this step optimizer dot step. Then you can find out your running loss

or accumulate out loss over all the samples in a given epoch and then you have the same

thing stored down over there.
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Now, these  are  pretty  straightforward  and simple.  The only  important  change which

comes with semantic segmentation or a pixel wise classification is that your loss function

changes on to a 2d loss function such that now you can use these not just one single

tensor of an output, but now you have a two 3d tensor which is coming out in the earlier

case you would have just a 1d tensor coming out as your output 



So, after that this training is over, then what we do is we try to look into the performance

over there. Now, for performance what we do is we just pass over the data on my testing

data available to me. So, there were 20 images which I was using for my testing. Now, I

do a feed forward over here then find out my loss using my criteria function and then I

keep on accumulating this loss.

(Refer Slide Time: 20:38)

So, this is my validation loss which is getting accumulated over there. Then I have my

plotting routines and then my timekeeper over here.
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Now, if we go through this one we can pretty much see that it keeps on running over

there and then we can find out that per iteration we calculated out separately. So, once

you  have  your  training  loss  reported,  and  then  you  are  testing  losses.  So,  it  starts

somewhere  around  a  training  loss  of  0.05  and  then  it  keeps  on  decreasing  where

somewhere around the third one hundred epoch this training loss is something which

goes down about 0.02.
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So, this is my funk plot for this training loss as well as the testing loss now. What you

can see is that while you are training loss was still higher, but you are testing loss keeps

on going low which definitely is a good sign because this means that your model is now

generalizing much faster over a larger corpus of images then. So, typically if your test

loss is  lower than your training loss it  means that  the generalization ability  for your

network is definitely good. Whereas, if it is the other way around where your test loss is

above the training loss then its prone to over fitting and then that is not a scenario which

you would prefer in any cases.
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Now, comes down our visualization of what this model has learnt out. So, what we end

up doing over here is pretty simple. I am going to pick up one of these images from my

testing set over there. And then on the only one of these images I am going to actually

show you what comes out ok.

(Refer Slide Time: 22:07)

So, let us look into what comes out over here. So, we had picked up one of those images

on which for my channel one which was basically my background class. So, white is the

regions which have the highest probability. So, since the blank out region over there



master out region was belonging to class zero, so that is the region which gets the highest

probability over here and that is become one. Channel two was what belong to the vessel,

so I can see my vessel probabilities coming up over here. Channel three is the probability

of getting down my background tissue over here off of the retina, so that is what I end up

getting in this map coming up.

Now, if we compare that with our ground truth then that is also pretty much standard. So,

this is just the pixels which belong to the background class, so that is marked in white.

So, if a particular pixel belongs to a class, we are just going to show it up in white. When

it belongs to my vessels and where it belongs to my background tissue over there. So,

this let us zoom out a bit so that you can actually see them.

Now, if you now since you can compare all of these together; so you can see pretty much

how accurately the semantic segmentation with such a lightweight network really comes

up in segmenting out all of these blood vessels much more accurately then you could

have otherwise thought of. And it does not actually take much of amount of time. So, if

we get back into our training time consumed over there, so in order to finish off 100

epochs of training it just  took me 6 minutes and 48 seconds on our machine so that

means, that this kind of a network is actually pretty fast to train and does not have much

of a overhead incurred as such.

So, this is one of these examples of trying to have a very simple semantic segmentation

using a network of your own side. It is not always necessary that you will have to stick

down to very costly networks and much deeper networks with complicated calculations.

If the problem demands that you can actually finish it off with simpler networks over

here. Then be it so, so this is a clear example of where a simpler network beats any of

these more complicated networks in order to solve it out.

So, that is where we come to an end on semantic segmentation and this week lecturer

series. So, in the next week we are going to enter into another interesting aspect about

deep neural networks and that is called as generative modeling or is there some way that

given some random numbers can we generate an image in a very simple sense. So, just

stay tuned next week when we get back onto this interesting aspect of genetic models as

well.

Till then, thanks.


