
Deep Learning for Visual Computing
Prof. Debdoot Sheet

Department of Electrical Engineering
Indian Institute of Technology, Kharagpur

Lecture – 49
Semantic Segmentation with CNN

Welcome this next topic which we are studying today is called as semantic segmentation.

So, in much simpler terms, a semantic segmentation is also in the community known

down as a simple segmentation problem. And we are going to used on convolutional

neural networks for doing it.

Now, where the difference comes in is whatever networks you have done till now they

are  all  classification  networks.  So,  given  an  image,  what  is  the  class  of  the  object

represented in image, they can be multi hot classifications which are point on all the

different objects which are present in an image. And you can even do localization with

region proposal network or with a activation map over there.

Now, here where it comes as a difference is that you try to solve each pixel to pixel

labeling  as  a convolutional  neural  network problem over  here.  And what  that  would

essentially give is that pixels can either be exclusively labeled on in exclusively labeled,

but  then  the  classification  problem  is  no  more  for  the  image  as  a  whole.  The

classification problem is  now a pixel-to-pixel  basis  classification problem and that  is

what we are going to solve out. So, we will take so let us see what how these things look

like. So, in a typical example, you would have an image coming down over here.



(Refer Slide Time: 01:31)

So, in typical example, you will have these image coming down over here, and you will

have some sort of a map present ok. Now, what happens is that each of these pixels over

there will be associated a certain class. Now, these classes can either be something which

is undefined say the black ones over here are typically taken down as undefined; and the

other ones are which belong to a particular  object  category. Now, there can be these

mirrors, there can be glass panes, there can be this picture, or say the bed sheet then this

wooden part over here and similarly.

Now, these kind of data sets what they do is it its manually segmented out each of these

regions,  and you have some sort  of a watershed kind of an algorithm running down

which makes it  easier for manual  segmentation basically. So, there is some sort  of a

manual initialization and then you let flood filling algorithm go down. But then the main

problem for a cnn based system is that you will be given down this image and you will

have to predict  out something which looks like this kind of an image. However, this

these colors are not pseudo colors, so they are just colors which are associated with one

particular classification label associated with a given pixel over there.

So, now, my problem boils down to that for a given pixel based on whatever is present in

the surrounding of that pixel and everything which is present on the image I want to find

out a class label, a class label for every given pixel. So, my output size x y dimension is

going to be the same as the x y dimension of my input image itself, they are not going to



be different in any way. Now, that they have to be the same the point is how do we

actually find out our errors and try to do it and how will this network be created. So, this

has been an interesting problem within the community. Now, traditional computer vision

community was something which was doing really high in this context; so a lot of these

developments with respect to graph theory; then with respect to Markovian processes

and random fields over there. Now, it has been just in the recent past that we have seen

these kind of convolutional deep neural networks take a center stage in order to solve

these kind of problems as well.

So, today we are going to discuss two very specific over there; one of them is called as

U-net which was a really a winning solution and with a lot of effort put down into the

engineering over there how to solve this as a problem. So, it was not just the architecture

which was designed, but the training mechanism was also an intuitive part.  The cost

function  used for  training  was also another  interesting  major  contribution  brought  in

down by the inventors of U net.

So, this was used for solving a semantic segmentation in biological images. So, you have

images  from  microscope  or  you  have  images  say  from  a  transmission  electron

microscope or from the phase contrast microscopes. So, these images have really a very

low contrast coming down of the object to be segregated from the background. Now,

what  these networks actually  do is  despite  there being a  low contrast  they can very

accurately find out what is the boundary around the object and which is the object and

what pixels correspond to this particular object over there.



(Refer Slide Time: 04:37)

So, let us get into what this network looks like. Now, the whole reason why this was

called  as  a  U-net  is  because  the  architecture  is  something  which  resembles  a  U,  a

complete U over there ok. Now, it takes in an input image over here. Now, they call it as

a tile. This was done more for simplification of the training process and the native model

used to take in an image of the size of 572 cross 572. And these were all  grayscale

images, they were just one single channel that is what you see over here as a channel. So,

it just says one channel over here.

Now, this was the whole reasoning for a 572 cross 572 is just to get down from this

lower level reasoning because at the lower level they just wanted to have a 30 cross 30

matrix size over there. And then if you go down with this 30 cross 30 matrix size. And

just keep on upscaling then you would see down why it comes down to this one ok. Now,

you have typically seen the convolutional neural networks, where everything is arranged

one by one in a sequence fashion and it keeps on going. But here you see that there is

some sort of a pass then the output goes down then it passes and that is something which

we uses over here.

Now, the color conventions of each of these the arrow marks are mentioned down over

here clearly and that should be making it easier. So, what they do is you have an image

of seven 572 cross 572, and then you run a convolution. This convolution is a 3 cross 3

convolution with a transfer function of ReLu, and since they are not having any kind of a



padding added over there. So, whenever you convolve with 572 cross 572 with a stride

of one. So, no pooling or no multiple strides involved over there. Your resultant is 570

cross 570. You do the same kind of a convolution, you again get 568 cross 568.

Now, for the first convolution you have 64 kernels, 64 channels which will be giving out

over there. So, there are 64 convolution kernels. And a as a result you have 64 channels

being created for the next bunch of convolutions as well you have a similar kind of a

option going down ok. Now, from there when it comes down to when there are after two

subsequent convolution layers, you have a max pooler. So, this max pooling is with the

max pooling of two cross two. So, what essentially it would do is that the number of

channels is still going to remain the same.

So, there are 64 channels, but the spatial span x and y span over there is going to reduce

down by a one-fourth. So, each axis is going to be reduced down by half. So, 568 now

gets mapped on to 284. So, this is a 284 cross 284 sized matrix which has a 64 channels

over there ok.

Now, from there you can again do a convolution 3 cross 3 convolution and 228 channels.

So, you get a hundred and with 128 convolution kernels over there. So, you get 128

channels. You do the same thing and again you come down over here. So, and each of

these places, you since you do not have any sort of a strided sorry any sort of a padding

done, but you are just doing it with the stride of one. So, a full convolutional scale over

there is going to make you come down to a size of 280 cross 280. Similarly, you again do

a max pooling and then come down and here your channels are increasing.

Now, you  can  see  a  distinct  similarity  with  respect  to  VGG  net,  where  what  was

happening is that whenever you are reducing by half on the x y size over there, you are

basically doubling up the total number of channels over there at that particular layer and

everything is happening in banks. So, if you follow this down so every time there is a

max pooling and then there are two banks of convolution, then there is a max pooling,

there is a bank of convolution then a max pooling then a bank of convolution then a max

pooling and then it passes through ok.

Now, at the last part over here, you do not basically do some sort of a fully connected

layer over there, but you are just doing this convolution and passing it up. Now, on the

other side of it where it starts going up which is every time I am going to double up my



spatial size. So, here I had 28 cross 28, now I do an up sampling over there which is also

called as an up convolution. They do it with a 2 cross 2, so it comes down to a 54 cross

54. Now, we had done in our earlier lectures on encoders and decoders, we had studied

about how to do a up convolution over there. So, one was where you have a learnt up

convolution; the other is where you can just do an interpolation and make it double the

size

Now, here they had used just a simple interpolation kind of a technique. Now that you

interpolate and go up and you have 54 cross sorry you have a 54 cross sorry 56 cross 56

channel output over there and that has so over sorry. So, what you do over here is that

from 1024th channels this is something which is it  is not clearly mentioned out over

here. So, from 1024 channels you are supposed to come down to a 512 channels over

here. Now, you are going to up convolves this 512 channels and that will contribute to 56

cross 56 cross 512 over here, 512 channels each of 56 cross 56 size. Now, these 512

channels which are of 64 cross 64 size are now mapped onto this extra channel over here.

Now, what is essentially done is you do a copy and crop arrangement, which means that

on this 64 cross 64 if I want to chunk out of 56 cross 56 which basically means that four

border pixels on all the sides have to be reduced out. So, 64 minus 56 is 8 that divided by

2, so it means 4, 4 pixels on all the sides. So, these border pixels are what chunks out

over here. And now if you look carefully at this image, so you can actually download this

paper and zoom in and look into this image. You would see a dotted line and this whole

purpose of this dotted line was that just a chunk of it is going to be copied down over

there.

Now, this is copied and appended over here. So, in essence you get down 512 channels

which come from here, and 512 channels which come from here and appended. So, this

has 1024 channels. Now, there are 512 kernels which will map these 1024 channels onto

over here such that this comes down to a size of 54 cross 54. And then again you do a 3

cross 3 convolution using these blue arrows at all 3 cross 3 convolutions with ReLus you

come down to a 52 cross 52.

Now, from there you are again going to go up now here what this whole thing does is

when it does a 2 cross 2 convolution, it reduces them the total number of channels as

well. So, from 512 channels, you are going to go up one to 256 channels over here. And



then you take down a chunk truncated part over here of 256 channels and merge it over

here. Now, once you merge it out over here, you get 512 channels coming down. So, this

truncation is going to ensure that whatever is the output which you pool from the earlier

layer on this part of the network which can also be called as a encoder network is some

sort of compliant with the size, so that you can actually append and keep this one doing.

So, you keep on doing the same thing and repeat and come down to this upper layer. And

on  this  upper  layer,  what  you  have  is  from  this  last  convolution  layer,  you  have

everything appended over here, so that makes it 64 channels from here and then other 64

channels  from here  so  128  channels.  Now, you  do  a  convolution  and  get  down 64

channels you do another convolution 64 channels. Now, from the 64 channels, you need

to come down to 2-channel output over there. And this is for the foreground and the

background that is just two classes over there.

Now, the best way of expressing two classes is as in say a classification problem, you

had just two neurons. So, if you had an image, you would be and if you want to classify

this image into two classes, you just have two neurons. And based on which neuron is

firing up as high is what you say that this is the class present in the image. Now, here the

same thing boils down to as I want to classify each single pixel. So, I need to have one

neuron representing each single so and if there are two classes over there, then there

should be two neurons which represent each pixel.

Now, if I have a semantic segmentation, where I have 10 classes to solve out for each

pixel,  then  over  here,  I  should  be  having  down ten  output  channels  such  that  each

channel at a given pixel is what is representing a particular class. So, you have one class

coming out for each of them so that is the whole architecture, and how it comes down.

Now, essentially on having solved it out, so what we do is on your input side you are

going to feed an image;  on your  output  side,  you get  down these different  channels

coming  out.  Now, your  data  for  training  should  also  have  all  of  those  channel  data

present in the same way; otherwise it is not going to work in any way that is that is for

any kind of a semantic segmentation problem. So, this is about U-net.



(Refer Slide Time: 13:29)

Now, cleverly what these people had done is so you have this image. So, you can look

down how low contrast  this  is.  Now, this  is  the ground truth  which is  available  for

semantic segments. So, you see each in a different color because that is so it is it is not

something like there are different number of channels over there it is just two channels of

foreground and a background. Now, the whole purpose of doing this one was just to

enable you to count out how many objects are present over there. So, this was just an

object counting.

So, each object is given down a different label and that can be implemented with a very

simple algorithm called as connected component labeling which you have studied known

in your image processing classes. Now, what you need to essentially have is a very good

segregation of these boundaries between these cells and that is a very important aspect.

So, what they did is once you have these objects present down over there, and if you can

count out what each object is then you can do some sort of a morphological operation

and actually chunk out these boundaries over there.

Now, this boundary map is very important to calculate something which is called as a

boundary weights. Now, what they do over here is that you have your foreground and

background which classification problem you are trying to solve. But these boundaries

are very critical, and these boundaries between cells are what will be segregating one cell

from the other and this boundary belongs to this background class itself. Now, you know



if we can associate certain weights distinct weights with these boundaries over there,

then when I am classifying it out what it would do is that if there is an error associated

with so you remember about the different cost functions which we had done.

So, we had these weighted cost functions for classification. And one important aspect of

having a weighted cost function for classification was that so that if certain classes are

underrepresented. So, over here you would see that majority of it is foreground some of

it  is  background,  and  then  these  border  regions  or  the  boundaries  between  these

neighboring  cells  is  what  is  really  underrepresented.  So,  if  certain  classes  are  very

underrepresented then I would try to somehow gives the errors over there a much higher

weight such that, when I am forcing these errors to come down to a higher weight I will

essentially try to make lesser errors. If there is more penalty associated with one miss

classification, I will try to reduce that miss classification. So, this is what will happen

within a learning algorithm.

And for  that  purpose,  we actually  associate  different  weights  over  there.  And  these

weights are on a pixel to pixel basis ok. Now, in the earlier class, in the earlier examples,

where you are doing a classification of an whole image. So, you had a weight associated

with a class now you have a weight  associated with a  pixel  and where that  pixel  is

located ok. Now, if you have a pixel which is located on the boundary, and if you are

making an error then that costs you more, then if you are making an error somewhere in

between over here. So, this kind of weighted scheme of finding out an error is something

which really helped in the performance of U-net kind of an algorithm.



(Refer Slide Time: 16:25)

Now, finally, these are some of these results, which come out over there. So, if this is an

input over that this is the output which it shows out. So, in the yellow you basically have

the ground truth and the one in cyan which is a shadow out is what is the actual result of

segmentation. So, here also you see the same thing in yellow, you have the ground truth

of the boundaries over there or for each of these objects what is the ground truth of the

borders. And then the ones in color are the segmentation outputs. So, output for each of

these channels which comes out over there.

Now, this  is  one kind of a network a very famous network in the biomedical  image

segmentation community called as U-net.



(Refer Slide Time: 17:04)

Now,  so  these  were  and  that  when  it  was  solving  out  in  2015  and  on  the  cell

segmentation  challenge  in  (Refer  Time:  17:11).  Then  this  is  where  it  actually  stood

down. So, this was like way ahead over here, and then this score over here is just a IOU

or intersection over union. So, what they do is over here the ideas that you find out total

number of pixels which are common between the ground truth and your segmentation

result. And you divide this by the intersection or all the sum total of all the pixels which

are common which are there either in the ground truth or in your segmentation results.

So, it is it is just A intersection B, where A can be your ground truth and B can be your

segmented result divided by A union B So, so it is a just a modulus count over there and

um. So, this PhC was a phase contrast image, and DIC-HeLa was a images taken down

from  a  different  kind  of  a  microscope  called  as  a  differential  interference  contrast

microscopy over there.

Now, in either of these cases, you see that this particular network really stands ahead of a

even its next competitor. And one of the reasons why this was working is a definitely

there was this architecture which is working out great. The resolution level dependent

transfer  of  certain  weights  is  what  was  helping  out,  but  more  importantly  was  this

weighted error function which played a significant role in how it really worked out ok.



(Refer Slide Time: 18:31)

Now, the next network which we study is from a actually last year it so the network was

out there in the community for quite some time; it got published on archive in 2015 and

then has been there in rounds. And in 2017 on i triple e transactions on pattern analysis

and machine intelligence it came out as a full paper. Now, this kind of a network called a

SegNet is a really a interesting one which has taken the community largely basically

because of the speed up which it gets over here. It takes in certain aspects from a certain

understanding of resnet, dense net or even U nets as well, but not all of them.

So, here this network is specifically designed for RGB images. So, you do not take a one

channel output over the input over there, but nonetheless the output mechanism is the

same. So, for each single class, you have one channel associated over there. So, if you

are changing the number of classes, you will have to change the number of channels in

the output as well. Now, what it does is you have some convolutions convolution layers

over there. So, the ones in blue are convolution and batch normalization and relu. So,

batch normalization is just for a kind training it down in a batch training method. So,

otherwise it is on the structure side it is just a convolution and relu which is present on

these blue layers; on the green layer is where your pooling comes down..

And if you look at it clearly this also looks very similar to a VGG kind of a structure. So,

you have a bank of these convolutions then you do a max pooling then a bank of thicker

convolution or fatter convolutions you do a max pooling and subsequently you go on.



So, if you look at this part of it, it pretty much resembles a VGG 16s initial layers over

there, but on the other side you have the decoder part over there. So, this decoder is

something it, it rings a bell because it sounds as if like an encoder decoder yes it is an

encoder decoder. The only thing is it is not a auto encoder in any way because you are

not reconstructing the same image over here, but you are just finding out the semantic

maps ok.

Now, when I am upscaling so what would happen is that what we were doing out in U-

net was necessarily that we were just making it interpolated by double the factor. So, if I

had a two cross two upscale, then I will interpolate on both the axis by double the size

over there, but then here that might not work out. So, instead there is another mechanism

which is called as a pulling index translation or in index passing and pulling. So, what

that essentially does is if you look at a if you if you remember clearly from our pooling

operations over there, and an unspooling, so you have a two cross two block say for our

two cross two max pooling and then you would represent it at one region.

Now, if it is a max pooling operation then one of these pixels is what is represented as

one pixel now if I backtrack and try to put it back over there then all the four pixels are

the same maximum value. Now, this is not right because I am going to have patchy kind

of efforts  and lose down on the high frequency and the smooth components  coming

down over there.

Now, here essentially what we do with this pooling transfer is with this index transfer,

you have this 2 cross 2 region where you are going to put it down, but then you know

exactly from which location this was pooled down. So, you are going to replace it back

into  that  region and all  the  other  missing  ones  are  what  you can  fill  down with  an

interpolation any now. So, that is the difference which comes down over here.



(Refer Slide Time: 21:54)

But essentially that allows you to preserve a lot of your boundary properties. Now, if you

look  down into  your  results  over  there,  so  given  this  kind  of  an  image,  this  is  the

semantic  segmentation  ground  truth  which  is  present  down.  The  second  row is  the

ground truth, and the third row over here is what is my predicted results. And you can see

pretty  sharp  predictions  coming  down  over  there,  and  one  of  the  reasons  was  that

because of this un pooling this decided index passing un pooling which you could now

do over here, you had very sharp boundaries which were retained out over there and

instead of blurting out in any way. So, that was one very important aspect which comes

down in this kind of a network ok.



(Refer Slide Time: 22:30)

Now, if you look into another result which was like one example which I had taken on in

the first slide on a pixel by pixel segmentation problem, you still see the performance

coming out quite good. Now, the downside is definitely that say black as a unknown

class if it is not taken down in your training data then it will not come out. So, if your

unknown classes are not marked as an unknown class separately here, then there is a

high chance that because nonetheless it has to point out any one of these object classes as

being over there.

So, if none of the above is not an object class and you do not have a separate layer

defined for that zero labeled out class, then it is going to put on any pixel as one of these

labels because it does not know exactly what is an unknown label over there. So, that

was a only downside over here, but then the method and the performance has improved

over here and the results are much better if you look at them now.

So, this is where we end now and on semantic segmentation we will be solving out on

the tomorrows class in the lab session on trying to do something and this will be an

interesting problem. We will not be using any of these data sets, but a very different data

set and try to see if semantic segmentation can also solve that kind of a problem on these

images has got. So, with that we come to an end for today’s lecture.

Thank you.


