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Welcome, today we are going to look into one of these lab exercises, associated with

activation pooling.  And while in the last two lectures,  you have studied about global

activation pooling as one of them, and the other one for finding out regions was using the

region proposal network, so that was an rCNN.

(Refer Slide Time: 00:21)

And, we had compared out the pros and cons of each of them; while in global activation

pooling the advantage is quite distinct, as it comes out that, you do not need to train a

network explicitly just for finding out where the object is located. So, that means that

even if you do not have object localization data present with you, you can still train a

network. And then using the activation maps coming out of this network, you can of this

classification network, you can actually find out and localize by expressing. And that

gives you more of a hotspot, kind of a behavior and where this object is present in the

image.

Now, on the other side of it, you also had region proposal networks in which you needed

to have some sort of region proposals given to you while training. And based on these



region proposals, you will be able to predict out where exactly the object is located. And

now the advantage with the region proposal network was that, you can have partially

occluded objects over there and still it can find out what is the total exhaustive span over

there. So, if there is one person behind the other person, then the person who is in behind

the bounding box, which comes up is pretty much distinct and confirm, met to the total

physical appearance of the person over there.

Now, we will be taking up one of these examples in our lab session and that is just with

activation pooling, now that is that is easier to implement and has a significant amount of

use cases in lot of practical problems. And for this purpose, what we are doing is, we are

revising one of these data sets, which we had earlier used in our auto encoder exercises

and that was about this, microscopy image classification of white blood cells ok.

So, we are going to make use of that ALL-IDB data set once again, so refreshing back

from your auto encoder days. And, what we are going to do is, if you remember then

when we have downloaded the dataset, there were two distinct folders over there in the

data  set.  One was  just  for  your  classification,  and it  was  given in  terms  of  smaller

patches; and the other one which you had was the whole image over there on which you

could find out WBCS and RBCS scattered down together, and the whole idea was like

where is the WBC located.

Now, we are going to take this first one, which is trying to create a network which is just

going to classify WBC is in two benign or malignant kind of a behavior over there. And

then use this network and its activations subsequently, in order to find out where is that

WBC exactly located on the image. So, this is overall what we are going to do.



(Refer Slide Time: 02:57)

Now, let us get into what we are trying to do over here, now the first part of the network

is still quite common and conformal to what we have done. So, these are your standard

header files, which we would just be needing. Now, once you have all of that done, and

once you have this data downloaded from this location, so you get done basically two

folders.

(Refer Slide Time: 03:13)

One of them is ALL IDB2, the other one is ALL IDB2. Now, IDB2 folder is the one

where you have this smaller patches of images stored over there. And IDB1 is the one



where you have the whole image, and there are WBCS present at a certain location. So,

since  the  whole  concept  of  training  these  kind  of  activation  maps  was  to  train  a

classification  network,  and then  use  this  classification  network subsequently  to  do a

localization problem. So, we are going to use the data from ALL IDB2. Now, the first

point which we try to do over here is, create down just a basic scratch tensor over there.

(Refer Slide Time: 03:51)

And now once that tensor is created out. Next is you read down one image at a time. And

now once this image is read down, now since the images over there are not of a fixed

size, so they keep on varying and typically they are about 256 cross 256 pixels in size or

sometimes, 257 cross 257 sometimes 240 cross 240 pixels. So, they were varying out,

but are the networks which we typically tend to use are the ones which would be taking

down only a fixed size of image. Now, we are going to use one of the networks from our

image net challenge over there, and for that reason we need to resize, all of these images

on to 224 cross 224 pixels, so that is the purpose of doing a resize over here.



(Refer Slide Time: 04:36)

And then what we do is, we try to just change the dimensions of the data set, so which

meant that the color channel which otherwise is supposed to be on the third axis, should

be coming down on the first axis, so that was our convention for using in (Refer Time:

04:48). So, that is the whole purpose of transposing 0 and 2, these two axis over there.

And then you just need to convert it onto a torch array from numpy format. And this

gives you, basically a 3 comma 224 comma 224 sized tensor, which can be fed down into

one of these tensor locations.

Now, what we have for our case is we are going to take down, 200 images for training

and 60 images for our testing and validation. So, the input tensor over there has a number

of images, cross number of channels, cross x cross y dimension, so that is what you see

200 comma 3 comma 224 comma 224. Now, here we take one image at a time, resize it

to 224 do the transformation get down this in 3 comma 224 comma 224 format. And then

rewrite that into one of these tensile locations over there. And as you keep on changing

this tensile location, you have everything filled up on the all the images over there. So,

you do the same thing for your labels as well, so this is just for your training data set.



(Refer Slide Time: 05:54)

Now, once it is done, so let us let us try looking into you can print out the complete

thing. And then you can see, what is the size of your training and testing data sets over

here.

(Refer Slide Time: 06:03)

Now, that your data set is created over there. So, you can actually transfer all of this onto

pi torch equivalent data set, and what that helps you is that now you can use your data

loader functions in order to load it down in terms of your batches. And we define our

batch size as just 32 images on our batch. So, just to stay conformal to what we had done



in the earlier cases. And then you have your data set given down, whether you are going

to shuffle it across over there, so whether your stochastic nature for gradient descent to

come into play the number of parallel workers over there, and these are the stuff which

you keep on set.

(Refer Slide Time: 06:29)

Now, next what we do is we look into whether a cuda base GPU is available over there.

So, since your GPU is there, so you just tag off that flag.

(Refer Slide Time: 06:48)



And then you start with your network. Now, we start with resnet18 and we are choosing

a pre-trained model; so the model which is already pre-trained on image net. Now, where

we need to make a change is that image net classifying model is something which has to

classify 10,000 object categories. So, you will have 10,000 neurons over there or 1,000

object categories 1,000 neurons. So, it is it is more over there.

Now, what  we need to effectively changes we just  have two classes of classification

benign versus malignant and nothing else over there. So, we change that and make it

down just as 2 neurons. So, this is the first part of the architectural adaptation, which we

need to do; then get it converted onto your cuda. So, this is the only part with changes

within a pre trained network and the last classification part over there.

(Refer Slide Time: 07:44)

Now, till now we have not yet come down into any aspect of activation pooling. And this

was just to print the network, and you can pretty much see what is present over there. So,

this is your resnet 18 the standard resnet 18 network without any kind of a difference

coming down. Next is since this network is first trained for a classification problem. So,

we need to take a cost function, which is conformal to classification problem solving;

and for that purpose we choose a negative log likelihood cost function over there. And

the optimizer which we choose is stochastic gradient descent.



(Refer Slide Time: 08:08)

Now, once everything is set over there, we decide to run this one for 15 iterations or

epochs over that, now within each epoch it is it looks the same.

(Refer Slide Time: 08:16)

So, there is not much of a difference which we are doing over here in terms of code. So,

first is you need to convert your inputs to variables the variable container for use within

auto  grad  features.  And  then  once  you  have  that  one  converted,  next  this  is  a

normalization,  because  your  inputs  were  basically  in  unsigned  8  bit  integer.  So,  the

dynamic range over there was 0 to 255 whereas, whatever inputs we are supposed to get



down to this network is supposed to be in the range of 0 to 1. So, this normalization

comes off a huge help over there.

(Refer Slide Time: 08:45)

Next you; so next what you are going to do is basically you do a feed forward over the

network. Then find out your loss and that would basically be via forward propagation

over the criterion. And now since you are going to use a negative log likelihood as a cost

function. So, you need to have a log softmax on your output side as well. So, that is this

extra transformation which comes down, for matching down the for matching down the

input parameter space, conformal to your criterion function.

Now, that you get your loss coming out over there. So, you can find out which is your

maximum, which is your predicted class coming out over there. And based on that, you

have your optimizer set down ok.



(Refer Slide Time: 09:25)

Now, once your optimizer is starting down with the zeroing down on gradient. So, the

first part is you need to find out your nabla of loss or the derivative of loss that solved

out. Then, you update your parameters over there.

Now, once  that  is  done you keep  on accumulating  your  losses  over,  as  it  keeps  on

performing as well as your accuracy of correct predictions as well, and then you store

this data over there. Now, the next is what we need to find out is our testing. So, this was

one part of my training epoch in which, I do a feed forward then my losses and then I

back propagate it over there, and then find out that what is the networks current state,

after this first update which has happened out. So, that is what we do with this testing

data set over here, and that is also pretty simple except for the fact that, I do not have any

further  back  propagation  operation  going  down on my testing  dataset.  It  is  just  the

forward prop which takes place and you have your errors and predictions coming out

over there.



(Refer Slide Time: 10:32)

Now, from there  we enter  into  this  is  just  a  simple  plotting,  routine  which  we had

followed now. So, let us look at what it comes down to, so you start down with your first

iteration, and the training loss initially is about 0.22; and then you see this loss keeps on

going down. And your testing accuracy over there initially starts with about 59.5 percent

and then it keeps on increasing. So, around the second epoch it is already at 88.5 percent.

(Refer Slide Time: 10:54)

Then there is a bit of fluctuations, and then it keeps on going down to a steady point;

where sometimes it even touches down 100 percent accuracy in classification. However,



you need to keep in mind that the training data is said is small; your testing data set is

even smaller. it just has third 60 images present over there. So, there are chances of it

getting over fit, but nonetheless this is something, which comes down between your 95,

200 percent of border and since you are using stochastic gradient decent. So, for that is

one of the reasons why it is it is obviously, fluctuating a lot.

(Refer Slide Time: 11:12)

(Refer Slide Time: 11:38)

Now, a better practice is basically you can pull down your learning rates over there. And

shift over from a stochastic gradient to and adam and do it. However, this was just done



for the purpose of that stochastic gradient descent computes much faster than an adam as

such.

(Refer Slide Time: 11:42)

Now, once you have that you can see your losses and then you are accuracy on training

and testing, and this is our standard way of looking at it. But the interesting part comes

after  this,  because  once  I  have  trained  this  network over  there.  Now I  will  have  to

actually create out these weights for associating each channel. And then what will be the

weight associated for classifying a particular output or localizing a particular category of

object.



(Refer Slide Time: 12:04)

So, for that purpose what we had done in activation maps was quite simple, that we take

out the last activation map over there. And then you do a global average pooling on top

of that map, and this global average pooling is basically going to reduce, the last channel

over  there  the  x,  y  dimensions  into  just  one single  one.  So,  if  you had I  have  512

channels over there. So, in essence what I get down after this global activation pooling is

512 cross 1 size tensor over there, for each image. And then you have a fully connected

layer which connects out and does the classification training once again 

So, that is essentially what you would run down over there and then finally, you can see

your network comes out over here.
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Now, once you have trained it out. The next part is basically to copy down all of these

bits and just keep it for your purpose, because what you have is we had sort it down with

just  a two class  classification problem. So, I  have 512 neurons which are connected

down to 2 neurons over there. So, this is going to give me a 2 cross 512 sized tensor

coming out over here.

Now, there will obviously, be another bias tensor over there, but we are not interested in

the bias at the current point, because that would just be giving a dc offset, and that was

not part of the original formulation of using down global activation pooling for creating

these kind of activation maps.



(Refer Slide Time: 13:33)

Now, the next part is where we need to look into our, testing data from the other data set;

where you have whole images.  Because, here the objective is that I have my WBCS

present at certain locations in my image, and I would like to find out where exactly is

this WBC located. So, it is not know more about classification in any way. So, I am not

going to need those smaller patches of images, but now I can give down a larger patch of

image.

And on the other side over as well, since I do not have a fully connected layer going

down  anywhere,  and  they  are  just  convolutional  connections.  So,  I  can  put  down

basically any sized input over there, and still it can give me an output coming out. So, I

do not need to restrict myself to 224 plus 224. I do not even need to restrict myself to say

a square, like aspect ratio over there. I can pretty much give down a rectangular one, say

3,000 cross 2,000 pixel images has input over there.

However, one thing which we need to keep in mind is that, you cannot go much lesser

than 224 cross 224, because over the subsequent convolutions which were there, say in

your VGG in 19 architecture. You were doing a max pooling as well, and that is going to

reduce it down. So, if you put down a 100 cross 100, somewhere in between it might just

vanish out, so this is a fact which you really have to keep in mind while doing it.

And, the other fact which you need to also keep in mind is that, if the span of my object

in the original image; which I was using for classifying, if that is say 100 pixels, then on



the target one also it should be about 100 pixels. Now, suddenly on the target image if it

becomes down about say 500 pixels cross 500 pixels, then you will not be getting down

exact  features,  which  will  translate  across  the  network.  So,  this  is  becomes  a  scale

problem, and we are not training out a scale agnostic network in anywhere.

So, these are few intricate points which you need to keep in mind, otherwise while trying

to do a action localization over there. And in fact, based this is one of the reasons, why

activation  maps  do  not  fare  that  great,  as  compared  to  a  region  proposal  network;

because in a region proposal network, you do not have this kind of restriction. You can

actually get down objects of different sizes and you can train with that and the region

proposals, can also be generated. You do not need to stick to this fixed aspect ratio or

fixed attribute sized of objects, while you are trying to train it down.

Now, here what we do is we start reading from this other database which is IDB1 which

is a whole slide image, it has WBCS RBCS everything spread over there.

(Refer Slide Time: 16:02)

And, then we just chunk out one of these images in order to demonstrate and show it to

you ok. So, this is location 0 at the first image which comes up on that tensile location

over there. Now, if you have a GPU, which in our case is what is available, so we are just

going to convert it into an auto grad variable. Once this typecasting is present, and you

have your transpose operations appropriately done over there as well.



Next, for the visualization part over there what we need to do is, so you can do a feed

forward over here. So, you get your output coming up completely. Now, if you have

GPU over there, then everything is present onto a cuda kind of a construct, you need to

convert it back onto a CPU, and then a retype (Refer Time: 16:44) numpy, so that is this

other part of the network which you see. Whereas, if you are running it on a CPU, then

you do not have this part in working out in any ways, because everything is still residing

on your CPU RAM and is in nampy format Ah.

(Refer Slide Time: 17:00)

So, over here what we end up doing is create something called as a mask. So, what this

mask essentially does is you are going to take a weighted summation over all the channel

outputs which come down, so if I have 512 channels; then I have 512 weights associated

with them. So, each channel is going to get weighed by the weights over there, and these

weights are something which I get in my earlier case from here. Which is the weights

which were connecting down these, 512 neurons on to the two classification neurons

over  there.  And  this  512  were,  coming  down as  the  global  average  pooling  of  the

activation maps over there.

Now, so this is the second part of it, which you see over here. Now, once you get down

this  weighted  masking  coming up over  there,  the  next  part  is  just  to  take  down an

average along the axis along each of these channels over there or the zeroth axis or the

first dimension which comes out, and then you can pretty much see it out.



Now, this first one which we see is in terms of trying to see, if we do not have a weighted

averaging over there across the pixels, but we took down just a plain simple averaging

which is you take all the activation maps over there sum up all the activation maps and

divide by 512 or the total number of channels which comes down over there, so that is

going to be a plain simple. But then I did say that you would figure out that if different

activation masks will be showing out different objects in a varying proportion and not

everything is going to be not every activation is something which is related down to

count your particular objects which you are trying to look for, and that is one of the

reasons  why  this  mechanism  will  not  be  working  out.  So,  instead  of  that  here  this

weighted combination is something which is preferred. So, we take this weighted one

and that is also shown down.

(Refer Slide Time: 18:42)

Next, what we do is we randomly pull out a few activation maps, just four activation

maps over there to see exactly what comes out in them. Now, if you look over here, this

first one and the second one, the first one is if you go back onto my code over here, then

I can see that my first one is basically a plain simple averaging. It does not have the

weighted averaging taken place.
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But, the second one is out Img1 is something which comes from here, and this is my

weighted averaging which takes place.

(Refer Slide Time: 19:11)

Now, on my weighted averaging, I do see a hotspot coming up over here, whereas over

here, it is it is somewhat in the negatives, like wherever there is a high on this case I see

a low over here, but that is not a very distinct case as such to come down. And our

definition of what we had discussed in the last lecture, clearly said that wherever the



object is present that is which is going to show you a higher probability and we will have

a higher response.

Now, if we pull out four different chunks from there, you would see in that in one of

these activation channels, you have something high present somewhere near where the

object was. Whereas, others were pretty much low and even this one had an activation

which was almost at the periphery. So, it does not help out in any way.

(Refer Slide Time: 19:53)

Now, let us look have a look at the actual image which was present. So, this was the

actual image which we were trying to look at, and this is the WBC which is present over

there. And the whole objective was just to localize what where this particular WBC is

present. Now, if you go back and look into our activation map, it does do a very good

amount of localization. What interestingly also comes out is, that the other one which

kind of negates.

Incidentally for this case I just created a negative of this map, so if you do a inversion of

this map, you might end up getting the WBC itself, but then this is not always the case.

In some of these cases you might find these, averaged out maps to be really erratic in the

nature of their behaviors over that. They might not be having much consistent behavior

whereas, if you look down onto this other network, which is a weighted combination of

all the activations which come out of the channels, then you can pretty much see where



wherever this WBC is present you have a pretty distinct high probability coming out over

there.

Now, this was a principle example of how to use, activation maps from any kind of a

classification network; in order to initialize entry in your object location tracker over

there. Now, you have many more examples which you can pretty much take up at this

point of time, you can train down just a classification network on smaller patches of

images, and then go down and replicate it on bigger images.

So, examples are you can train something like; alphabet detectors, or character detectors

over there. And then we use this kind of a linear at architecture for handwrite character

detection  run  it  over  full  scale  images,  and  you  can  find  out  there  is,  something

handwritten present on the images. Or you can create a number plate detector and then

run it over images and you can find out, isolate out and really get where is the number

plate present on that whole image.

So, there can be many more examples of practical problems, which we can solve it out.

So, just make yourself comfortable to go around with more data, which is available out

there open to use in the world, and then get it going and solved. So, that is where we

come to an end for these kind of problems on activation pooling and trying to localize

our objects.

In the next lecture, we are going to start with process called a semantic segmentation or

simple segmentation, which is when instead of classifying one image, we are going to

look into classifying each single pixel on an image and how it solved out. So, till then

stay tuned and get up.

Thanks.


