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Welcome. So, today we will be doing our exercises with transfer learning. So, in the last

lecture we had discussed about one of these aspects which is called as duman adaptation.

And duman adaptation as it goes down is to an experiment I had through one of the

results from one of our earlier publication papers and through a lot of other aspects I will

shown you that if you have a classifier of some sort; So, not necessarily only a deep

neural network, but then you have a classifier which has been trained on one particular

data set to do a particular task. And then can you use all of this in order to solve another

related kind of a problem.

So, one of those examples was what we did with retinal images in which it was (Refer

Time: 00:49) on one data set called as drive which was more of from healthy people and

was from a different  camera  a  different  hospital  and everything.  And then when we

wanted to  use the same model  which was trained to  do vessel  segmentation  on that

particular data set on a different data set, and then you saw this problem that initially it

was not giving out good results if directly deployed.



And then what  we had an idea was can we use some examples  at  least  a minimum

number of examples over there in order to make this come down to a convergent point

and will that be better then trying to train a network from scratch, which is using only the

data from that other data set on diabetic retinopathy which is called a stair ok. 

Now, standing on top of that on those experiments what I said is that for deep neural

networks. We had done our experiments still now using some of our pre trained models,

but  then  we  never  use  the  weights  over  there.  We were  just  importing  the  model

architecture and then we trying to do it. So, we had done it on LeNet we had done it on

vgg net on GoogLeNet on ResNet on densnet and over there what we had done is just

take down the architecture, and trained it now for our own data set, and for us most of

these  experiments  we  were  doing  it  on  see  for  dataset  which  is  just  a  ten  class

classification problem and the images are pretty small at 32 cross 32 pixels and colored

images.

So, the only common denominator which was binding all of them was that these were

natural images and GoogLeNet kind of networks which were also done where for natural

images, but then all of these networks were for a thousand class classification problem

on image net. And here was just a ten class classification problem, and we took this ten

class example over there from the aspect that, it is easier to train when you have lesser

number of classes, you will be requiring lesser number of data. So, it was just a good toy

example to get started with around.

 Now, today what I am going to discuss is  if  we take a network which was already

trained to solve the image net problem to a great extent. So, say these GoogLeNets and

vgg net then dens net, ResNet which made up its real soaring appearance in cvpr on

virtue of winning the image net challenge. So, can we use all these pre trained models

and would that give us an leverage.

Now, definitely looking down at the aspect of what we had learnt from the earlier class if

we have a trained model and then we just try to refine it out it. It would be much easier to

do ; however, then there can be multiple ways of refining. So, one of the ways of refining

maybe where I update all the weights over that for the whole network, but that is a costly

process.



Now, the  other  way you can  refine  it  that  you just  update  that  final  terminal  layer,

anyways you will have to change the architecture for the terminal layer. Since you are

now not doing a thousand class classification problem, but just a ten class classification

problem. So, let us let us look into what happens over there, and today’s experiment will

have something where I do not use a pre trained model. I just train everything from the

start versus if we use a pre trained model and then either modified partly or modify end-

to-end and then what comes out ok.

So, the over here as it goes through if we look into the codes over here, then you can see

down that, the first part is pretty simple and standard that is the header which we have

been using as of now for all of our experiments. We do not make any change over there.

Next comes down our data. So, for the data, we are using CIFAR10, and now since this

particular experiment deals with GoogLeNet.
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And what  we had seen is  that  GoogLeNet by it  is  virtue core virtue over  there  ;  is

something which was requiring 299 cross 299 pixel image is not two four cross two two

four sized images over there. And for that reason we had to scale and transform these

images over there. 

And once you have the scale version of images at 3 cross 2 2 3 cross 299 cross 299

available then you can work it out. And we also choose down a smaller batch size. In

fact, here we have even a lesser batch size of 8 for the fact that we would be training

actually three networks; and that is going to consume a lot of memory on our side as

well.



(Refer Slide Time: 04:58)

So, let us get down to this one, so there is the train loader and the test loader, the train set

and the test set which are completely created out. And we are just going to you make use

of that. Now the, so since we have the data and file already there it is it is confirmed and

it works it out.

(Refer Slide Time: 05:13)

So, the CIFAR data set which we have is of 50000 examples in the train set; and 10,000

examples on the test set. And then here we start with defining our network. Now, if you

look into the first network um, this is the one which is similar to the definition which we



had created in the earlier case example, which was just pull it  down from our taught

fusion library of models. And this is inception v3 which we were using. 

Now, I create the next network which is the same as over here, except for the fact that I

used this pre trained equal to true argument over there. And what this does is it does not

just pull in the architecture from the web archive source, but it also pulls in the weights

over there. So, although pre trained weights we will now get important and I am going to

make use of this pre trained model. So, this is something which is already trained for

solving the imaginary problem, and now we are going to look down whether it is able to

solve this CIFAR10 classification problem as well.

So, then we define another one which is called as net 3 and next we also has the same

kind of a mechanism over there. The only change comes down is that in net 2. So, this is

what we have commented over here.

(Refer Slide Time: 06:12)

So, net 2 is the network which we are going to do end to end fine tuning which is you

replace the last layer of 10,000 nodes of 1,000 nodes, and then replace it by just 10 nodes

over  there.  In  an  when  you  are  training  you  are  going  to  do  the  whole  error  back

propagation over the whole network.

In the other one, what we are going to do is, we are just going to update the last layer

weights we are not going to update the complete  network over there.  So,  this  is the



change which we will look down and we will look into, so one aspect is that when you

are just updating the last layer weights over there. So, your total compute complexity is

really coming down, because you do not have to update the whole network at a go. Ah

On the other side, we need really need to look at that at this reduced compute complexity

which we are offering, so that is a gain for us definitely in terms of the compute potential

for the network. The last is in terms of decrease in accuracy; so is accuracy significantly

decreasing because of this reason or can it really, keep on still working out. So, these this

is the actual motivation of the whole work over there.

(Refer Slide Time: 07:15)

So, we just print down net 1 architecture, because as such it does not print weights if we

are just printing down the other network over there. So, net 2 and net 3 we will have the

same architecture which looks out.
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So, next the straightforward thing which we had for inception and we just have that, now

what we do is. So, this one was looking into the total number of parameters over there,

and then to count it out, so this was another part which we had done earlier this week

which  was  look  into  the  theory;  Now,  actually  finding  out  the  total  number  of

computational parameters.

(Refer Slide Time: 07:48)



Now, if you go down through this part, you would be able to find out the total compute

parameters  as  we  had  done;  in  the  earlier  experiment  on  GoogLeNet  and  that  was

something around 27 million parameters over there. Now once that gets over.

(Refer Slide Time: 07:53)

The next part is to do this architecture modification. So, as you remember, that in all of

the cases what we were doing is that the last layer over there was getting replaced from

2048 to 1,000 neuron connection instead of that; we are just going to replace it with 2048

to 10 neuron connection. As well as the same kind of a thing happens for the auxiliary

layer as well. Because in each of these, things you again have an auxiliary layer. So, the

auxi  auxiliary  layer  also  gets  replaced  from 768 neuron to  1,000 neuron connection

instead of that, we are going to put down 768 to 10 neuron connections over there. So,

these are the two modifications which we do for all the networks.

And again  recalling  back from the  GoogLeNet  lecture  over  there;  So,  the  particular

model which we are using in torch in pi torch over here. Is the one it just has only one

auxiliary classification arm it  does not have two auxiliary classifications and for that

reason, we just take down to changing only one of these arms over there; because the

there is not the other one in anyway.
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So, now what we do is we just copy down our weights, the initial weights over there.

Now keep in mind one thing that for your net 1, this is which is randomly pre trained this

is this randomly initialized this is not at all pre trained; net 2 and net 3 are the pre trained

model. So, net 2 and net 3 is initial state weights are the same in both the cases. They do

not mix up in any of them and net 1 weight is very different from net 2 and net 3. 

(Refer Slide Time: 08:20)

Now, we get into the pattern GPU availability, now it is if it if it is available then there is

a typecast operator. And we are done in the previous lectures on what happens during



typecasting,  and how there is  a dma transferred and the whole model as well  as the

weights and the data itself gets transferred over there. So, this part is also quite clear with

you  guys  on  what  we  were  doing  with  the  typecasting  and  what  was  the  compute

equivalent  on  the  computer  hardware  side  of  it,  what  would  was  it  initiating  on  a

hardware aspect as well. 

(Refer Slide Time: 09:50)

Now, from there coming down to the loss criteria and they are pretty simple. So, since

we are solving the classification problem, so it is the negative log likelihood loss which

we are taking down and then the optimizer is Adam for all of them and the learning rate

over there is also kept constant ok.

Now, having said that there is one critical aspect which we need to look into it; So, for

network 1 and network 2 is where we are going to do end to end. So, network 1 is which

was randomly initialized and then you had trained it from the final node to the initial

layers over there. Network 2 is which is already pre initialized with the weights from

solving the image net problem and we are still going to update the total weights of the all

the layers from the last layer till the first layer. 

Network 3 is where we are going to freeze in the weights of the layers from the first till

the terminal one. So, only the last layer which is for connecting down 2048 neurons to 10

neurons that is the one which is getting updated everything else does not get updated.



 Now, as a result when I am not updating anything else over there, so I do not even need

the auxiliary losses, because there is no back propagation happening off for all of them.

So, they are they are the ones which are going to remain preserved. Now, that is the

change which we have in the code. So, in the code, if you look down into the parameters

what we do for network three is we just use this fully connected parameters over there of

the fc layer. So, this was this fc layer which we had changed over there for each of them.

(Refer Slide Time: 11:34)

Now, we are going to just use the parameters over here in order to optimize. And what

that would mean is that this is these are the only set of parameters on which the update

rules are going to run on the other parameters the update rules are not going to run, and

you will end up updating only the last layer for this network ok. So, now, once that goes

down, we train this model just for 5 iterations because some part of it is already trained.

So, it is it is easier to show it to you. The other downside is that it takes really long say

GoogLeNet per epoch was taking down like what 8 to 9 minutes of it to train down.

And now since we have three networks to train down in one single shot. So, whether it

takes about 24 minutes or roughly half an hour of time to train it. So, going it down for

more epochs is going to take more amount of time; so for us we have just done it for five

epochs. In fact, within five epochs, it does come down to the saturation point what we

wanted to show on the performance characteristics ok. Now, there goes down the losses



and an accuracy tensors which we needed for each of the three models and then we start

for each of the model over there.

(Refer Slide Time: 12:27)

Now, within an epoch, I am going to load down one batch of data. Now, for that batch of

data I just see if it is if there is a gpu available, then we just do a cuda typecasting which

is to get the dma transfer of the batch of data, onto my gpu ram. So, that it can work over

there. 

And then my first part is, do a feed forward over it, collect down the outputs from the

auxiliary arm as well as from the actual terminal output over there. And then do a final

classification accuracy compute over there. Now, once this accuracy is computed over

there.
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Now, what we need to do is you will come down to your optimizers and then actually

create down, zero down all the gradients intermediate over that.

(Refer Slide Time: 13:10)

Then do a criterion based loss function compute for the auxiliary node; as well as for the

main terminal node over there. And then find out what is your total loss for the model.

And this is what you keep on storing, as well as within your optimizer you are going to

make use of all of this. And do an optimizer dot step which just once the update rule.
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Now, since in your first two networks network and network one and network two, net 1

and net 2. You had collected down all the parameters to be used within atom. So, all the

parameters are getting updated in net 3, we had just used the last fully connected layer.

And, so the updates which happened down are only in the last fully connected layer over

there and nothing else gets updated or modified in any way ok. 

Now, once that is done. We have our losses accuracies and everything taken down and

averaged out over it. And then within each epoch I am also calculating out my validation

scores. So, this is on the test data set which is left over there. So, at the end of update of

one of these epochs, how much is the change which happens, during the test performance

for the module. 

So, this is what I compute out and then it pretty much goes on in the same way. The only

difference over here is that instead of using one network, we have three networks which

we are using. And then I decide to plot all of them. So, we will let us go down and look

into the models and how they are training and then come down to it ok.
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So, within each iteration there are three models which are training down over there. So,

if  you  look  down  at  the  training  loss;  So,  the  first  model  which  was  a  randomly

initialized model it is starts with a much higher loss whereas, the second model where

you had done a you had just modified only the terminal node over there. That is the one

which has a lower loss; while the other one is where you had modified the terminal layer,

but not updated all the weights you had just modified only the terminal layer weights. 

So, in net 2 is where you do an end-to-end update. In net 3 is where you do only the

terminal layer update. So, it trains out definitely much faster, but then the loss is not so

low. So, the loss is relatively high over there.
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Now, if we keep on going through the network, you would what you would find out is

that at the end of five epochs over there. So, for model 1 the loss is somewhere around

point 06; for model 2 on net 2 is, where you had updated the whole network end-to-end

for CIFAR problem is around point 1. And for the last one, where you are just updating

the final layers is, where the loss is a bit higher. 

Now, if you look even at accuracies what you see is that the first model where you had

started with a random initialization, a random guess over the weights and then updated

all the weights together; that has a higher accuracy on the test data set; As compared to

the other model where you were updating only the last terminal nodes.

So, this definitely means that, one point which I was emphasizing on the lectures on,

domain  adaptation  and  transfer  learning  was  that  you need  to  really  update,  all  the

weights and features, and everything over there. Not just the classifier layer over there.

So, it may be that your features over there, are not quite specific to the actual problem

which you are dealing with and they might also need to get an update. So, this is a clear

example where you can see this discrimination coming down.
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Where in the first case, when you are updating all the weights over there; So, you see an

accuracy come down to at 81 percent; whereas, in the last case where you are updating

only the last layer weights over there. So, the accuracy does not go up that high, it just

stays at 74 percent ok. So, we look into this part over there. 

So, this is the auxiliary loss. Now, look into one thing in model 3 is, where we were

updating only the final layer. So, we all not connecting the auxiliary arm, parameters and

updating that. Though we were collecting the losses, and there was this arm kept over

that. So, this remains fixed this does not change in any way.

And for  the  other  two models,  you would  see  that  the  auxiliary  loss  also  keeps  on

decreasing substantial. Now, model 1 is where it was a random guess. So, it starts with a

much higher one; and then keeps on going down. 
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Now, in the next case is where you see for the first network. network one, where I was

training it from scratch and doing it. So, this is how the my train and test, losses are

decreasing and this is how my accuracies are going down.

(Refer Slide Time: 17:06)

So, you see crossover point at about the fifth epoch itself. Is when my train accuracy is

increasing, but my test accuracy is, now either saturating or trying to decrease out. So,

this is the first crossover point which comes down over there. Now, this is for my second

model where I was doing an end-to-end update based on the training over there. Now,



definitely  it  comes  down much  faster,  towards  the  convergence  as  compared  to  the

earlier model.

(Refer Slide Time: 17:33)

Where it was not initialized based on some lever guess, but it was a random initialized

one. You see that, the crossover also takes place much earlier. So, this is already at the at

this point. So, which is almost like this is the first epoch, second epoch, so this is my

third epoch. So, in between the second and the third epoch is where the crossover is

already taking place over there.

So, maybe just after 2 epochs you can just stop it, or a maximum you can go out to 3

epochs; and then you see that the whole network is updated. So, this is much faster. So, if

you look into the earlier case, you do not get this much of an accuracy of say, 94 percent

in the in single shot over there.

So, if you if we look into the first case which is this model. So, at the end of third epoch

which is somewhere over here, I have an accuracy of 75 percent, but then if I start down

with my weights which are taken down from the image net problem. And then at the end

of third epoch, I am already at 94 percent which is really good and that is the advantage

which you get down with the transfer learning of using a model which was trained on a

similar or a rel or a on a related kind of a data; for the related kind of a problem and then

just  modify it.  So,  you have a  much higher  accuracy coming down with just,  lesser

number of epochs of training.
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And then if you look into the last one, where I was looking into just modifying the final

nodes over there.

(Refer Slide Time: 18:49)

Now, that will not always be helpful, because you still see that you are limited at the

below 75 percent accuracy in either of these cases and the. So, the trained accuracy is

also lowered, though the test accuracy or the generalizability is much better, but then one

that your test accuracy is still limited below 75 percent.
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So, this is another critical fact which you need to keep in mind that always updating, just

the final terminal nodes might not always be the best possible solution to go around with.

(Refer Slide Time: 19:34)

So, once we have that the next idea was to. So, this is where it says just the same kind of

plot, but taken down into the same thing together. So, this is my train loss, and my test

losses, I also have my test accuracy plotted down over there for all three of them.

So, if you look into it your model 2 which was a pre initialized model, and then just

being updated over there. So, your test accuracy is really keep on increasing, and it is



definitely a few folds higher than your other models over there; model 1 and model 2,

model 1 and model 3. Model one which was just randomly initialized and trained. Model

3 is where were only the final nodes, were getting updated.

(Refer Slide Time: 20:08)

So, now, let us look into the weights over there. So, this is for my model 1 where I had

my random initialization. So, this was the weights for the first convolutional layer. So,

you have 3 cross 3 kernels over there and 1, 2, 3, 4, 5, 6, 7, 8 and 8 so that was sorry 4

and 1, 2, 3, 4 1, 2, 3, 4. So, there were 32. So, you have 32 channels over there and 3

cross three convolutional kernels over there, which you had for the first layer. 

Now, what you see is these were the random initializations, which had been done. This

was the update after one after at the end of five epochs over there, and these were the

change of the weights which you see. Now, for your second layer over there, this is what

you observe over there. Now, in the second layer definitely, because the input was 32

channels over there, so we just display for one of the kernels all the channels coming

down over there. 
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Now, if you look into the second model where you had taken a pre trained model. So,

this were the weights at the start of the training process, and these were the weights at the

end of the training process over there, and these were the difference of the weights which

were coming now. Now, if you look into the second convolutional layer over there, so do

you see these were the initial final states as well as the difference coming down.

Now, here comes the interesting part which was the model 3, in which what I was doing

is updating only the final nodes and I was not updating anything intermediate. So, these

were my starting states. And since I was not updating anything on the previous layers

over there, so this becomes my ending state; then my start state and end state is the same.

And for that reason, you see that your weight difference matrix over there is completely

0. So, there is there is no update which is happening over there. 

Similarly, is the case for the second convolution layer for the network three as well. So,

this is what we have as a clever and clear exercise, for doing your transfer learning on

any kind of a deep network. So, this was one example just using GoogLeNet in which

you have, the aspect of arm auxiliary arm as well. And then how do you do this either a

full  end-to-end  training,  or  you  are  just  concerned  with  the  last  final  edge  of  final

classification terminal nodes over there.

So,  now, one  thing  which  is  clear  from these  graphs  is  that,  definitely  it  is  always

advantageous to take down a model which is pre trained. And for you it  is going to



consume lesser  amount  of  your  CPU time  yes  it  does  take  more amount  of  time  to

download the model, because the model is not just the architecture definition. It also has

the weights over there. So, that is the additional bytes which will be downloading over

there. On the other side of it your CPU time which is going to get consumed is lesser. 

Now, the next factors will you be updating only the terminal layer. Now, this is case to

case dependent, we cannot directly comment over here. But typical practice is that, only

updating the terminal layer might not be a very good idea, because your features might

not be optimum for your particular data set which you are looking. So, if you look into

image  data  sets  from  image  net,  which  are  224  cross  224  sized  over  there.  The

granularity and resolution is much higher. Whereas, for CIFAR it is smaller sized image,

they were just thumbnails of 32 cross 32.

So, when once you scale it up, in fact there is a lot of blurring which comes down around

over that. Now, the features associated with trying to identify an object which is blurred

versus the features associated with trying to identify an object, where the image is very

crisp and of a high resolution are going to be very different. And for that reason what you

would find out, is that this  particular  model,  does not work out good if you are just

updating the final layer. 

Whereas, if you go down for newer kind of problems, where it is a activity net is a new

challenge which comes up. A lot of people have a good way of just trying to take a pre

trained GoogLeNet were, this GoogLeNet was trained on for the image net problem. And

then you update only the final layers, you do not update everything, because on activity

net also your videos are almost of the same size of 224 cross 224. And then natural

looking images, they are of high resolution; there is this mismatch of early level or low

level feature descriptors is, not that.

So, that is what we have for the transfer learning. As of now we have, the next lecture

where we are going to cover down, transfer learning with receiver networks as well; so

what happens within residual connections, and what is an advantage which you gain and

if there is some disadvantages as well. So, we will be doing the same thing and repeating

it, once over again to check down what goes on over there as well. So, with that we come

to an end to today’s one.

And thank you.


