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Welcome, so today in this lecture we are going to start discussing about some of these

very important aspects of operating down on deep neural networks.

(Refer Slide Time: 00:19)

And like by this classes, which we have done already you have got a very preliminary

idea  on how to  create  down your neural  networks  and then  how to  go around with

training, how to define your cost functions, and then certain kind of learning rule. So,

and all of these aspects around learning rules, which you were doing down was either

sample wise update or you had a whole epoch wise only ones update or a batch wise

update. And you did not realize through these lab experiments, which we were doing

down that there is definitely some important aspect about the time being consumed in

each of them.

Now the question was which we had not yet touch down, which is for very practical

problem for your data is really large. Now, what will you do in that case; and how does it

go  around  and more  of  from another  very  important  perspective  was  is  there  some

possibility that you while you are designing the network and you calculate it out.



So,  while  in  one  of  these  earlier  lectures,  we  had  done  a  very  preliminary  one  on

calculating out the total model complexity, space complexity and the operational time

complexity, for few of these very basic components. So, one of these components was

fully connected layer and the other was convolutional layer. Now, this was while you are

doing it on layer by layer bases over there we showed you a very simple example; and

then while I was doing very deep neural networks over there, I was opening up another

table to show you, what is the total number of parameters over there and what is the total

number of operations which comes down.

Now the question is that while so these were networks which have been already designed

by people and they are available out over there for you to go and try out. The question

always comes down will, they be working on your computer on, which you are trying to

do it do you need to get down some specialized hardware equipments or maybe get a

cloud axis.

Now, quite earlier in the first few weeks of this lecture, when it was starting as well as on

the forum; we did not receive a lot of queries on whether there is a requirement for you

to get down cloud axis or not. And in the earlier classes what we were quite specifically

saying is that; there is no specific necessity for a cloud axis, and infact there is not a

specific necessity for getting you very specialized hardware.

Most of these examples which we had done was done in a way, which you can run down

on your very simple laptop computers as well. Now; and it never even needed you to run

on a g p u most of the times you could do it on a CPU itself; and except for very deep

neural networks going down like GoogLeNet, and ResNet and DenseNet is where, you

wake making use of some of these very specific g p us. Now, we would standing on top

of these experiences which you have as of now.

So, one part was the theory part of it yes the signs over there works out, the math is

perfectly tractable, but then you need to have an engineering aspect about that. So, which

comes  down  to  the  point  is  that,  while  you  would  look  down  that  your  network

converges in very lesser number of epochs over there. There is also a question like how

much time is it going to take per epoch, and if you are given down two networks, which

perform  equivocal  good,  but  then  one  of  them  takes  a  more  number  of  epochs  to

converge, where as another one takes lesser number of epochs.



Now, in generally you cannot say that the one with lesser number of epochs is something

I would prefer. Now, what would happen down is that; maybe the one which is taking

lesser number of epochs per epoch time is much larger and as a result, what it is doing is;

it is taking more duration. So, if it consumes one day of a time. So, 24 hours in order to

just run 10 epochs versus, the other one which is taking just 2 and half hours to run 100

epochs  and  both  of  them are  producing  equivocal  results.  In  that  case,  I  would  be

preferring; the later one which takes in just 2 and a half hours to run down 10 epochs

over there.

Now, how do you get to these calculations and these are very much machine dependant

as well. So, whether you are; what kind of a CPU you are using; what kind of a g p u you

are using; it is very much dependant on that. So, today I would be starting with this very

basic  introduction  and  going  through  the  revisions  once  again  on  the  compute

complexity and the space complexity. So, that it  gets quite into your thought process

much earlier over there.

(Refer Slide Time: 04:25)

So, what we today do is; we look into the space complexity of model, then the operation

complexity and then computational complexity and eventually like after this first bunch

of revisions; we would be doing a few of these case studies for very standard neural

networks, which we had done in the last week itself.

(Refer Slide Time: 04:42)



Now, coming down to the simplest point over there, what we had is; if we are connecting

down n number of neurons to k number neurons in a fully connected layer. So, this was

the first one with which had started down ok. Now, what you have is essentially that each

of these output neurons over here has connections to each of these input neurons over

here. So, that would mean that there are n number of such weights, which are connecting

over there and for each of these k ok.

Now, so that essentially brings me that the size of this whole weight matrix over there is

something like n into k. Now, each of these k neurons over here, which are neurons on

the output also has a bias associated with it, which technically means that there are k

number of biases over there and that would make it n k plus k is; what is the size of this

weight matrix. So, this is what we had already done and that in a reduce form comes

down to n plus 1 times k.

And now since each of these weights are certain elements over there, and this is a matrix

technically an array, which resides on your ram over there; now for any kind of an array

you; obviously, have a data type restrictions and then this data type is very much specific

over there. Now, whether you are using a character type data, which is just 8 bits over

there or you are 16 bits of data which is long hint; which is an 16 sixteen bit integer or

you are using a long hint it depends on what compilers you are using or you are using a

say floating point number on the i triple e floating point number system, which would

make it as a typically a double precession floating point number or 64 bits or 8 bytes

over there.



So, that is going to be another extra factor, which will consume what is the precession of

your number system or p and how many bytes per number are you taking; and that is

going to define; what is the total  amount of memory it is going to consume while it

resides on your ram or on your hard drive. So, in fact while you are downloading the

model with pre trained weights; obviously, not the untrained ones. So, when you are

downloading  the  model  with  pre  trained  weights,  how much  does  it  take?  So,  in  a

subsequent lecture, when we enter into transfer learning we would be getting into more

of what is the model with a pre trained weight and what happens; when you try to use

any of them we also have some interesting exercises lab sessions, actually which take

care of all of this.

Now, if I have my weight matrix over here, which is now stored on my hard drive and

then I take down p number of bytes per element to store; so this effectively makes the

amount of space which I require to store it on my ram or on my hard drive as n plus 1

times of k p bytes over there.

(Refer Slide Time: 07:20)

Now, that brings us to the next point, which is operational space complexity. So, this is

what was the space; which I had required to store all of this on to my ram, but now I am

going to make use of it ok. So, there will one sample point of data coming to it, and then

going through on the output over there and then independently how much of space do I

take it over there. So, typically I will have an input x, which has a dimension of n; which



comes  over  here.  And  then  what  it  produces  is  an  output  over  here  which  has  a

dimension of k and then inter mediently it will be having certain activations as well.

So, what that comes down is that you also have this nabla of w or what is the gradient of

this activation with respect to the network being created over there not the gradient of the

activation  of  the  activations  with  respect  to  the  nonlinearity,  but  just  the  gradient,

because the nonlinearity is after here over here and then that will take the same amount

of space as in k.

Now, we are not looking into that part of it,  we are just looking at for each of these

samples going over here; what is the gradient which is getting computed. So, that is also

typically the size of the matrix w itself, because this is del del w of the y activation over

here. So, that is the total size of the matrix which comes down. Now, what that brings

down is that; your nabla of w is another additional space, which it is going to compute;

when you are doing a back propagation.

Now you need to keep one thing in mind, that whatever learning rule you are doing you

are always going to back propagate it out. Now, based on what is your optimiser that is a

very different point like, what is your update rule, which comes down, but for most of

them you are going to; obviously, do a back propagation ok. Now for your simple vanilla

gradient decent, which we are looking down as of now; so will need the same amount of

space as in the amount of space acquired by these bytes and this is for just one sample.

Now, when  you  are  changing  over  to  multiple  samples  this  gradient  over  here  is;

obviously, also going to change.

So, that is something you need to keep in mind. So, that we will do that in a later on

point of time when we look into actual compute scenario within one particular machine

at a given point of time. Now, here is where I would be looking into it; so one part is that

you have your weights of this matrix, and you also have your gradient of the activations

computed out over there and both of them are of the same size ok. Now together when

you look into the total space required for implementing this network. So, that is the some

of these two bytes.

Now, on top of that you have your input coming down over there as well as the gradient

with respect to your input being taken down. So, that is 2 n number of amount of space

which it would take and there are this k output; which goes down over here and then you



have nonlinearity  or your back activation going down over there.  So, your backward

calculation over there is going to take down 2 k amount of space. So, this together sums

up as twice of n plus 1 times k plus n plus k is what you have as your total operational

space complexity required for this operation ok.

Now, this was about how much of space will it consume, while staying on the ram. When

you want to do one forward operation or you want to do batches of forward operation.

Now, what changes down when you are trying to do a batch of forward operation is that

this weight does not change until it is updated, but then delta w is something nabla w is

something which will be updated; which will be unique for each of these samples, which

is going down over there.  And for that  reason this  is  something which will  also get

multiplied by the batch size. So, subsequently your n and k these values will also be

changing for each sample. So, dependent on how many samples constitute your batch is;

where you are going to bring in that factor as well ok.

(Refer Slide Time: 11:00)

Now next is looking into the operational compute operational compute complexity. Now,

why we have looked into space on one side of it the next aspect of any of the algorithms

is to look at how many operations is it going to perform in order to do this compute.

Now, what I have typically is that I have k number of neurons over here and there are

weights associated with k number of neurons there are n number of such weights.



Now, for each neuron I will be doing a multiplication of this input with the weight. So,

there are this is an array of length n and this weight over here, which connects down to

one neuron is also array of length n. So, now, it is basically a dot product between two

arrays of length n. So, element to element, I am doing a product over there ok. Now,

when I do element to element product between two arrays, which are of length n in that

case then total number of multiplications, which I would be doing is n over there ok.

Now, I need to add all these multiplied resultant element. So, I have n and n and then I

add all of these together over there. Now, the moment I add all of these together over

there. So, what I would typically get down is another array. And then I have n element

long array over there.

Now, in order to add down all elements in a pair wise format on a l increment array I will

have to do n minus 1 number of addition operations over there. Now keep in mind one

thing this is not a 0 bias auto encoder, though we have not marked down explicitly the

biases over there, but then for a simple standard fully connected network over here I will

have down my biases as well. So, there would be for each neuron one extra bias, which

is one extra addition which comes down; so that makes it n minus 1 times additions plus

another extra addition which makes it up to n.

So, there are n number of additions now for our current generation of machines as we are

discussed  earlier  multiplies,  adds  and  everything  happen  pretty  much  at  the  same

machine cycle over there. And you can call this as just one operation itself; whether it is

a multiply or add we are not much worried about it is just an arithmetic operation which

is going down.

So, that would mean that my total number of operations now over here while trying to do

it comes down as twice n k. So, it is n plus n and which makes it 2 n, and then I do it for

each  of  these  neurons  which  is  for  k  number  of  times  ok.  So,  that  makes  it  2  n  k

operations over here in order to implement it. Now for us simple example we had seen

that, if I connect down 100 neurons to 10 neurons, then this whole things comes down to

about 2000 operations over there.  Now, if  I connect 4096 to 1000 neurons, then this

comes down almost like 8.2 million operations.

So, just from changing down from 100 neurons to 4096, which is say approximately 40

times more over here I really had about 400 times more of an operation going down. So,



that is were the change really comes into it. So, it is its there is no guarantee that how it

work out. So, you need to really figure it out and it is just always dependent on the total

number  of  operations.  Now,  this  was  about  the  operational  complexity  for  a  fully

connected layer and we had seen that while the operations over here are still look as if

they are much denser, but then the total number of operations is much lesser.

(Refer Slide Time: 14:17)

Now standing on that we; went over to the next one, which is to look into convolutional

network over here. Now for convolutional network, if you look into the space complexity

just for the model which is; if you are downloading the weights and storing it over there

and how much of space would these models just be taking down over there. So, just for it

you have if you have input number of channels, which is equal to c and the width and

height are w and h, then your total space being taken down just for storing 1 kernel is

equal to c w h ok.

Now, if I have k number of such kernels coming down, then there will be another extra

factor, which comes into play which is k which is the total number of kernels for the

output channels over there. Now associated with each channel there is also weight there

is also a bias over there as in we had in a fully connected network. Now these biases

would mean that there are extra k number of such additions, which come down over

there and so, this brings it down to c w h plus 1 times k. Now you can note a similarity

between a fully connected layer and a convolutional one. So, in a fully connected layer



basically your k is the total number of output neurons your n is the total number of input

neurons, which is equal to c w h and that something which guides down just the weights

over there.

So, this is what we have for a plain simple convolutional network and based on these

operations; as if you can break it down always you can come down to where it goes

down to ok. Now, in the same way if I am looking at the models space complexity then

the total amount of space I would require to store it down; if I am using a number system

with the precision of p is something equal to c w h plus 1 times of k p and that is plain

and simple as one an analogy from what we had done for a fully connected network itself

ok.

(Refer Slide Time: 16:01)

Now comes the next part, which is to look into the operational space complexity. Now

here you need to keep something in mind that say you have an M cross n image and your

convolving it over here with the c cross w cross h kernel over there.

Then you are going to get down M minus 1 M minus w plus 1 cross n minus h plus one

sized resultant and there will be case number of such. So, where k corresponds to the

total number of kernels, which you have for your convolutions being drowned down now

that brings us that the space complexity is something of this part. So, your input over

here will take c into M into n that is your input space over there now your kernels over

here they would take down k times c w h plus 1 amount of space good; now that is done.



Now your output which you get generated over here, that is what is M minus 1 M minus

w plus 1 cross N minus w plus; N minus h plus 1 into k, that is the space which it takes

down.

Now, I also have the gradient of the activations, which is nabla of w which is calculated

and that is the same size as that of this space. Now, this is where the whole aspect varies;

and is different from a fully connected network. So, while in a fully connected network

the advantage was that your output size was dependent on the total number of neurons

over here, but then here in a convolution your output size does not depend on the total

number of neurons, it is based out of this convolutional calculations that you get down

your output size.

However, the major point is that the; gradient of these activations and the activations

they are of the same size and they would be of the same size as this response map, which

you find it out. So, there are it takes in twice the amount of memory, which is to be

consumed over here ok. Now, that is what the operational space complexity, which goes

down which we had done pretty much. Now, the fact which we had not done yet in the

earlier  one and I had left  it  out for you guys to actually solve it  out and then as an

interesting problem, but I would be covering it today to check out whether your solutions

are matching down with our solutions, which we know directly from the analysis aspect

over there.

So, you could pretty much pull down any of your analogies, which you had learned down

in your fully connected network to do these calculations for your convolutional networks

as well ok.
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So,  there  comes  down  aspect  of  operational  compute  complexity  for  convolutional

network. Now, here you would see that you have c cross w cross h number of kernels

over there. And c cross h w cross h is the size of the kernel and you have k number of

such  kernels  available  with  you.  Now,  if  you  look  into  the  total  number  of

multiplications, which it does over there; then your total number of multiplications is

something, which comes down of this form now it is it is not; so hard to understand over

there ok. So, what you would do is essentially you would take your kernel and then you

superpose on your image on the location, which superposes over there.

Now, the moment  you are superposing over there;  so underneath this  kernel;  so this

kernel matches down with c cross w cross h number of elements present over there. So,

and it is doing a dot product with each of them. So, technically it means that it does a dot

product or does a point to point product over there for c into w into h number of times

ok.

Now I am going to give it a stride and move it down. So, based on how much my strides

is my resultant matrix size varies. So, the total number of times I would be moving over

there is; what is M minus w plus 1 as of now, if I am not taking a particular stride if I am

just doing it with a classical method, which is just with a stride of one. So, now, what I

am doing is that for each location I am going to do these many number of multiplication

c w h and then I am going to move over so many times.



So, the total number of times I would be doing this dot product operation is M minus w

plus 1 times of N minus h plus 1 great. Now, if I look into my additions as well. So, for

each of these when it superposes over there I will have c w h number of which is the size

of that array over there and then I am going to add all the elements. So, it requires c w h

minus 1 number of additions in order to add it ok. There is also a bias associated with

each  of  these  kernels  over  there  and  that  is  what  I  am going  to  put  down ok.  So,

technically that would mean that for each of these kernels over there I will have c w h

minus 1 plus 1 ok. And that I am going to repeat it over the whole image which comes

down. Now, if I look into my total number of operations.

So, the per kernel it becomes twice of c w h into M minus w plus 1 into N minus h plus 1

ok. And now I have k number of such kernels over there. So, this is what is what gets

multiplied and I get down in the number k ok. Now, say for a very simple one, which is

with a three channel input image of 224 cross 224 and then I convolve it with a kernel of

5 cross 5 and stride of one and then there are 6 output channels over there. Now, that

would mean that my total number of operations which I am doing in this case is about 43

million operations, which I have 43 point million operations.

Now, if you look into it then the total number of neurons, which you actually had over

here was much lesser, because the size of this convolution kernel is 5 cross 5 cross 3 over

here and then you have total 6 number of these. So, the total  number of parameters,

which you have is much lesser, but then total number of calculations you are doing is

significantly larger; now this is where it really makes it interesting over here.

Now, whereas, on the other side of it, you would have observed that when we were doing

these bench marking and learning rules and what happens across each of them fully

connected layers sometimes do 10 to take a lot of time to converge as compared to an in

fact like per epoch time for a fully connected layer is generally more than per epoch

time. But, then you have realized that the number of operations for these convolutional

layers is much larger than the number of operations you have for fully connected layer.

Now this is something I will keep on for the next lecture where; I would be going into

handing on hardware bottle next and what are the challenges which are faced over there

for each of them ok. Now, this is what comes down for a decent sized small network.



Now, if I have another network, which is say which connects down 3 cross 224 cross 224

cross onto 16 cross 16 channels over here and each of 3 cross 3. In that case you would

see that the number of operations is slightly reduced, but that not much. So, it is it is

about just 1 million operations which are been reduced, but then 1 million over a factor

of 43 million is not a significant reduction as you know ok. So, this is about going down

with computational complexity operational compute complexity for your convolutional

methods which we had not done in the earlier on.

(Refer Slide Time: 22:40)

Now, where that brings us is if you look into a standard VGG net like architecture over

here; you would find out the total number of parameters which are described out over

there.

(Refer Slide Time: 22:44)



And, I hope you have already done your bit of calculations though we had done it in the

our practical sessions with VGG net, but then it was also left out to you that you tried

down using your pen and paper method for each of them and then verify, because this is

important from your learning perspective that you have actually learnt the whole data

structure.  The  moment  you  are  able  to  actually  find  out,  what  is  the  total  space

requirement over there and what is the size of the parameters you are learning. You know

quite intricately; what is the structure of the data and how it is working out within the

network over there ok.

(Refer Slide Time: 23:24)



Now, for a GoogLeNet what we had seen is you had this kind of a whole table given out

with GoogLeNet, which made out one simple aspect which is at the end of it you could

get down, what is your total number of parameters which is being used in this particular

layer as well as what is the total number of operations which comes down.

(Refer Slide Time: 23:26)

Now, you can see pretty much for a decent sized layer, where it has 159000 parameters

you have about 128 million operations going down, where you have 380000 parameters

you have about 403 million operations which are going down over there. So, this is what

is (Refer Time: 24:00) an interesting; now it is not always necessary that, if your number

of parameters is high that your operations will also be high or even higher, because if

you  look  down typically  like;  if  I  compare  this  particular  layer,  which  has  380000

parameters, verses this layer which has 437 parameters 437000 parameters.

Now the next layer which is inception 4b has more number of parameters than inception

3a.  However, you can see that the total  number of operations in inception 3b is 304

million whereas, in inception 4b it is just 88 million.

Now, there is no direct one to one correspondences, which I have meant by this one and

this is something came into keep in your mind as well. So, it is not necessary that more

number of parameters would incur a larger number of operations over there though there

is another interesting aspect about the memory bottle necking, which might happen on

hardware, but that we keep it down for the next lecture to come on.



(Refer Slide Time: 24:58)

And next comes down your residual networks.

(Refer Slide Time: 25:02)

So, in your residual networks they have a very good table given out. So, if you have an 8

layer residual network versus the 34 layer versus 112 even 152 layers, then what is the

total size for each of these layers over here and what is the total number of operations,

which it is going to take down. And at any given point of time you can see that your

residual networks have lesser number of compute demand as compared to GoogLeNet

over there and or a VGG net.



(Refer Slide Time: 25:30)

 Now similarly comes down to your we come down to the DenseNet.

(Refer Slide Time: 25:32)

And you can also have a similar kind of a table done for your DenseNet where whereas,

the compute complexity is where they put down in terms of your graph.

(Refer Slide Time: 25:37)



In order to compare residual network with a densely connected residual network to find

out that with lesser number of parameters, you can achieve the same validation error and

in fact with lesser number of parameters you also have a lesser number of flops, which is

directly associated over there. So, this is where we come to an end for this lecture and

then one important take home message is that deep neural networks do not or deeper

networks do not necessarily imply that there would be a higher model and space as well

as compute complexity taking over there.

(Refer Slide Time: 26:03)

So, with that we came to an end to this one. And just stay tune for the next lecture on

which we are  going to  discuss  more  about  the  hardware  aspects,  and what  happens



within when you are trying to run it down on your computer system, and what are your

hardware specification on computer system which are going to restrict or allow you to

have your flexibility, and how fast will it be working. Till then stay tune.

Thanks.


