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So, Good morning and we will be starting with today’s lecture,  and that is on neural

networks for visual computing. So what essentially this would cover down as while tell

the previous two lectures and the one lab which we have covered we have learned how to

operate on images, some basic operations using the classical way. So, as you start with

any kind of a visual computing task, and say that my computing tasks over here is the

recognition tasks. 

So, you would be starting down with the taking an image, then expressing an image in

terms of its features and that is basically to compress down all the information which you

have  in  that  big  corpus  of  pixel  space  available  to  you.  Now  from  that  when  we

eventually go down as you have seen that there are features which you have extracted

out. 

The next question which comes down to you is can be classified and you know in order

to classify them the simple definition which you have learnt on some of the related other

subjects as well as what we had defined in the first few lectures was that. You need to be

able to relate certain features to a certain kind of an object category and this kind of a

relationship is what is called as a classification problem. 

Now in order to make it even simpler so, what it would essentially mean is that if I have

an image represented in terms of some different parameter say x 1 x 2 x 3 x 4, and these

are all may be scalar parameters. Now if I arrange these scalar parameters into sort of a

matrix that is what we would call down as a vector or in the standard parlance of our

definitions we would also be calling this as a feature vector. 

Now once you have that feature vector given to you how do I associate a feature vector

to one single categorical label, and that single categorical label may be whether it is a

cat, dog, horse or rose, flower, bus any anything of that sort. And this whole associating a

whole  set  of  these  attributes  collected  from a  feature  to  something  of  a  categorical



variable  is  what  is  called  as  classification,  and where  we stand down is  that  neural

networks as we know, when they came down in the early they all started down from the

perspective of visual computing itself, and now from that perspective here is where we

start down so.
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What todays lecture will contain down as in simple form called as we will be starting

down with a simple neuron model, and from there we will go down to the neural network

formulation, and then we go down to something called as a learning with the read back

provision and gradient checking and optimizations. Now what essentially this means is

that what we would do is we would define what a neuron is so, as in a neural network

you would always have a neuron.

So, then what do you called something by neuron what is its mathematical definition,

how do we learn to relate down something from feature space which are certain numbers

to another number which is a categorical variable which you get down. So, from a simple

neuron we will enter into what is called as a neural network or in same simple terms if I

have  some  sort  of  a  network  like  behavior  which  is  one  parameter  connected  onto

multiple parameters or multiple parameters connected to one parameter, and it can even

go down by a successive stages of parametric connections which goes down. And finally,

is what enters into what we call as the learning. 



And in this learning phase we have learning with aided back propagation, and what this

does  is  that  we define  something  as  a  neural  network  and then  say that  this  neural

network is able to classify images and as we go down over there. Now one important fact

which you will have to take care over here is that as we are learning over here.

then that would mean that somehow with experience going by that definition somehow

with experience which we are gaining we will be able to do that task much better so; that

means, necessarily that as we show it more number of samples of features, and which are

associated number of categorical variables over there, then this whole network over here

which I call as a neural network would be able to really associate any unknown feature

sample coming down to it to a categorical variable and classifier. 

And in order to achieve this  learning you will  have to go down through the way of

gradient checking and optimizations, and then how what rule display. So, as we go on

eventually you will get down to no more in details about them.
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So, a simple neuron model  is  something which is defined like this.  So,  we have the

mathematical equation, but let us get down into what it looks like. So, say I have three

different variables x 1 x 2 and x 3, and these can be three features, so features of an

image as in say brightness of the image over here is the contrast of the image. 



And say over here is the average entropy of the image. So, we can have three different

features over there for one single image given down. Now once we have these 3 so, each

of them is a scalar value as you see over here because brightness of the image is scalar,

now then the contrast of the image x 2 that is also a scalar well and entropy of the image

x 3 is also scalar. 

And now together what we can do is we can associate a categorical variable say p hat

over here which is called as a predicted class or predicted a categorical category label

variable over there. Now we can associate each of these scalars with certain vector, and

then we can sort of sum them up so, x 1 will be multiplied by a weight w 1, x 2 will be

multiplied by a weight w 2 x 3 will be multiplied by a weight w 3.

And then on top of it what we add is a certain scalar value with the dc offset which is

also called as a bias. So, essentially and then put it into a summation such that I get this

term y over here, and then my output over here. So, the form of y is something which is

written down as w naught plus w 1 x 1 plus w 2 x 2 plus w 3 x 3. So, if I have some n

number of variables over here, and I can have n number of bits associated with each of

them and then this will be a n plus 1 term summation which comes down over here. 

Now from there as we see we can also write this kind of a form in terms of a matrix

representation and that sort of a matrix representation is what is given down over here.

So, what w is basically it is a matrix of collection of all of these bits and b is basically.

So, over here, as in since we have only one predictor variable this is supposed to be a

scalar value bias, and that is equal to w naught itself, and x is another vector of all the

scalars which are arranged in terms of a matrix over there. 

So, this is a matrix form of representation now once I have that one what I can do is I can

relate this y to my predicted class level in terms of some sort of a non-linear function,

and we will  say that is an f NL. Now this f NL can have two different forms some

common forms are something like this. The first one which is also called as a sigmoid

form of non-linearity, the second one is what is called as the tan hyperbolic form of non-

linearity, now what it essentially does is that this my x s over here I do not have any sort

of a control over my x so, these can be anything from minus infinity to plus infinity for

the purpose of simplicity we keep down the fact that let these be real valued numbers and



not  complex  valued  numbers,  that  does  assist  us  in  getting  down  a  mathematical

tractability to the whole problem.

Now, all of these w s for me they can also be some weight some scalar weights which

can vary in an open range, and open range in a sense that they can be from minus infinity

to plus infinity. Now that I have these also open ranged then what I get down from this y

over here can be an open range problem. So, that can be anything from minus infinity to

plus infinity, but this p hat over here if that has to be a categorical label. 

So, maybe a true false question or like I want to classify it into two classes, whether this

is a ball or this is not a ball; it says 0 and 1 problem over here, now if this y comes to me

that can be anything from minus infinity to plus infinity which would typically make a

real challenge over here. So, you will need to some sort of like map it down into a 0 to 1

problem. Now one way in which you can map it down to a 0 to 1 problem is that just put

a threshold over there say that if the value is greater than 0 make it 1 if the value is less

than 0 make it 0 that obvious.

And then it is pretty much possible there is no harm in that, but what we do is we also

make use of these kind of functions say a sigmoid non-linearity. So, what it would do is

that as my y becomes tending towards minus infinity this is a value which goes to 0 and

as it tends to as plus infinity or a very high number this is a value it goes to 1. So,

typically my sigmoid function over here gives me a value in the range of 0 to 1. 

Now in the same way as I go with my second non-linearity which is called as a tan

hyperbolic. So, you can put down your values of y is varying from minus infinity to plus

infinity, and you can very intuitively see that  as the value of y goes down to minus

infinity this value tends to minus 1 as the value goes to plus infinity this value tends to

plus 1. And so there is the you can while you can as well use down a simple threshold

which is say just give down the argument that if it is greater than 0 make it one less, than

0 make it 0 yeah, but you can also be using this kind of an argument over here. 

Now as we go down a bit later on we would find out why this is an argument which is

like these two kind of nonlinearities are something which are preferred for making that

decision. So, from there let us get into now that we know about a simple neuron model

the next point is how we construct a neural network.
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And now, for that let us look into this one. So, if I have 3 scalar values over here so, what

I  can do is  I  can associate  it  to some different  number of patterns,  which I  want to

different number of predictors, which I want to do. So, it may be that based on these

three features so, x 1 being the average brightness x 2 being the contrast, and x 3 being

the average entropy on the image. I want to classify whether that is a ball in the image

yes or no and whether the image is a photograph or image is a painted one, maybe two

different ones. 

So, p 1 is the standard problem of whether there is a ball in the image or there is not a

ball in the image. And now I can write it down in this form so, what happens here is that

as you see that these weights now got down subscripted dually. Now with it with this

dual weight subscription what happens technically is that the first subscript over here is

the  target  pattern  or  total  the  target  class  to  which  I  want  to  classify, and  the  first

subscript is the one which connects down which feature is being connected to which

target neuron over here. 

So, that is how it is done so the feature x 2 connected to this class predictor p 1 is via

through the weight of w 1 comma 2 accordingly. So, this is what it you can get done for

y 1 and p 1 in terms of an equation.
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Now, if I get down another parameter p 2 and that is what I was saying that do you have

another different thing to predict and that may be that whether it is a natural image or this

was a sketched image. Now for that you will have a similar set of equation which you get

down over here,  now you can clearly see that using the same set of features by just

varying down the weights over here, you can make two different classification outputs

two different questions can be asked and their outputs can be designed over here.
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Now, similarly I can extend it to some n number of some k number of neurons over here.

So, on the input side my j th neuron will be linking on to my k th output neuron why are

the via the weight of kj and this is a generalized formulation which you would get done.

Now what happens after this is that if you arrange all of these scalars which are y is in

terms of matrix arrangement, because each is independent. 

So, you can arrange you would see that all these weights also start getting down into a

matrix arrangement. So, all these weights are initially row vectors and all of these y s

together is what forms a column vector. So, you can stack down all of these row vectors

now once you stand on all the row vectors you get down a rectangular matrix over there

of w and b.

And that is this with this matrix combination which you see over here in this equation,

and then accordingly your predicted neurons will also be stacked into one single matrix

and that is called as a p, while this non-linearity which you see that non-linearity was

applied on a scalar, and that is why this can be extended on to a matrix valued form, and

then so,  a  scalar  non-linearity  function  can  be  applied  anywhere on a  vector  valued

function and that will give you the same sort of a vector output which comes down over

here. 

Now essentially what this helps you is that you can relate down some j number of input

neurons to some k number of output neurons in in straight simple terms.
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Now, from there once you are able to relate it down, next what comes down is that I will

have certain sort of error when I am able to relate it down. It means that so using these

three features and some combination of weights which are present over here, I will be

able to predict whether that is a ball or not.

Now, for every image whether there is a ball or not there is a true value which I know,

and there is a value which is coming down from this neuron itself. Now the difference

between the true value say in the first case there was a ball, but it predicted there was not

a ball. So, there is it is an error it is a clear case of an error so, but here what I would get

done is that the error value is 1. 

In the other way round where say there was not the ball so, this 1 was 0, but it predicted

that there was a ball that is also an error. In case both of them predicted that there was a

ball and the ground truth is also a ball, then it is you do not have an error if it predicts it

there was not at the ball, and the ground truth also says that there is not a ball, it means

that it is a correct case. So, similarly we will have it for the second predictor as well, now

if you see all of these predictors are independent of each other. 

So, it means that the errors are also independent of each other. Now in that case typically

what we do is that instead of trying to take down a sort of direct summation over that the

best way is to actually take a Euclidean distance between the predicted vector over here,

this p that becomes a matrix, now and the actual ground truth which is so between your p

hat and your p. 

So, this will give me a single scalar value and that is what is my error E, now the whole

statement of learning over here, is in a sense that I should be somehow able to get down

a network such that. This error over here is supposed to become now supposed to come

down to 0. Now what essentially happens in that case is we use a method called as error

back propagation.
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So, what it would do is say I have a set of observations x 1. So, this 1 over here is no

more related to one particular feature, but that one which we are putting down over here

in this relationship is actually which is related down to which particular sample number I

am speaking about. So, what I do is that I take one image the first image for which I

know the ground truth for all the predictions I want to do and I have my predicted output

from my network coming down. 

I take the second image which is ik and it is features are x 2 and I have my ground truth,

and I have my predicted value. 

Similarly I keep on doing such that I have n number of images in something which is

called as a training set. So, what happens in a training set in this kind of a problem which

is a supervised learning problem is that you have a set of images some n number of

images and for each image you also know what is the class label given to it. So, here we

were asking down two questions, whether this there is a ball in the image or not and

whether this is a natural image or it is a rendered image or hand drawn image kind of

thing. So, there are 2 vectors over here which I there is a 2 dimensional vector, or 2

parameters which I want to predict down to class levels. 

So, that should also be known to me so, there are n number of such images on which this

is given down and that is what is called as the training set. Now on the other side I am

going to predict out all of this with a certain given form of my weights over there. Now



initially what I would do is I would start with a neural network in which all of those

weights are randomly initialized. 

So, there are some random values now once I start over there, so I would be able to get

down this difference. So, this difference is coming down for each, so I get the Euclidean

distance for each sample. So, for x 1 x 2 x 3 similarly it up to x n I get down this

difference  coming  down  for  n  number  of  samples  nomadic  once  I  get  down  this

difference coming down for all the n number of samples, I can take a simple algebraic

summation over this whole dataset and that will give me the error in the data set. 

Now I write down that in terms of something called as a J W or a cost function J in terms

of this parameter W, the reason why we do that is if you look carefully into this one. So,

my p hats are what are dependent on all my excess over here, but these x values they do

not change in the whole data set right, the only thing which changes within the network. 

Now which can impact this whole function is the weights of the network and that is why

this J is written in terms of J W. So, we will eventually get into that part as well, now the

whole objective is that I want to get down a particular value of W, which is the only thing

variable and adjustable within my neural network. Such that my cost function over here

is minimum, and this has to be minimum when you need to have done the minimum

error. 

So, as you can see if all p ns match all the p n hat, you would get down your minimum

error over there as you get down your minimum error in this case this has to be 0 so,

your J W is 0. So, what I would do is I want to get down this weight W somehow coming

down, such that my total error over here be comes down to c, and what we do is we use

this particular form of something which is called as a gradient decent way of solving this

one.

So, the problem the statement as it goes down is something like this that you initially

start with a random guess of W within a k th iteration. So, my k at the start of it will be k

equal to 0. So, at k equal to 0 I start with some W over here, now with that W I will be

able to get down my these predictions over here, p 1 to p n hat from there I would get

down my J W. 



And accordingly I can solve out this differential equation over here which is a partial

derivative of the cost function with respect to my weight at that particular instant. Now

once I am able to get down this partial derivative, I will just subtract it up over there and

get down my new estimate of weight which is my W of k plus 1. 

Now with this W of k plus 1 I would again start with the whole process, I would get

down all of these predictions from there, I would get down get down as the J W for W k

plus 1, and then I would iterate it over such that at some point of time I would reach

down this minimum value of W and then just stop over here. Now, essentially through

this whole thing what we are doing is what is called as gradient descent learning.
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So, in this gradient descent learning what happens is that you have your W and, if you

look over this is what the gradient is over there, now as you see this negative sign. So,

this is something which is going opposite to the gradient or what we called as descending

against the gradient.  So, there is a whole decent with this  along the direction of this

gradient which goes down. 

Now in that what essentially happens is something like this that as I have my different

epochs varying from 0 till k, so these changes. So, as my k varies from 1 to 3 and goes

up to k over there. So, my weights will be changing and accordingly my cost function

over here would be changing, and I would be getting down this some sort of a curve in



terms over here and finally, when it when I reach the minimum point over here this is my

stopping criteria, this is what I would observe now.

Once we see that this is what we have observed the interesting part is that lets look into

what happens in the weight space itself. So, if I plot down to different plots over here say

that I have a very simple neuron; we just associate 2 features to one single output to give

it much simpler. So, that you have just a 2 dimensional space over here, and this 3rd axis

over here of the 3rd dimension is the cost function. 

Now as we see we start with some random initial value over there, and with this random

initial value. So, we will have a point on the weight space as well as in this space of

epochs versus my cost. Now accordingly I update, so I go down to a next new value of

Ws W 1 and W 2 new value based on my update rule over there on the gradient descent.

Now  with  that  I  will  get  down  a  different  value  of  cost  coming  down  over  here,

accordingly I get down to my next one, and then it keeps on updating and as this whole

update happens this will come down to a point which would go down to this minima. 

And now, if you can clearly see the interesting part is that this looks like an egg gasket

design or where you have a lot of minimize and maximize which are just spread around,

and this is a pure case which can exist I mean in in most of our neural networks this is

the major fallacy which comes down. And as we go down deeper and deeper we will

come down to a much better understanding of why this fallacy exists. Now typically the

objective is that maybe you are at some value of w which is not exactly the minima. 

So, in case you are at the minimum value of W in the first epoch itself you get J W is

equal to minimum or equal to 0, basically the absolute minimum, and then you do not

have to worry about it. In case you are at some other value which is more than that then

it would eventually scroll down and come down just to this minima and that is your

learning problem. So, with this the basics of (Refer Time: 22:45) actually comes to an

end and we will be doing it,  in the next lecture where we have a lab session with a

understanding of how to implement this one, and then through that implementation you

will be able to relate down the ways of connecting these input images via certain features

to or class of outputs.
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Now finally, if you want to read more in details about these neural networks and the best

book to go through is actually Simon Haykins book on neural networks, and learning

machines, and for toolboxes well we would be using cycads learn on Python, you are

also welcome to use down Matlab with the neural network toolbox which is has a much

better gui, and given the fact that a lot of people are most experienced on Matlab you

might be able to use it much faster. 

But  we  would  be  sticking  down  to  our  options  of  doing  it  on  python  the  other

implementations are; obviously, based on Lua torch which also has acceleration with cu

DNN as well and the next one on which we will be doing our deep learning things in the

next week onwards is what is called as pytorch, and pytorches basically this original

library  which  was  implemented  on  Lua  that  got  full  completely  ported  on  to  for

integration with Python. 

So, it is a syntax and the base library of torch which is one of the fastest ones as of date,

integrated within python to work it out. So, that is all I have for this particular lecture and

just keep on tuned for the next one where we do some hands on as well, so with that.

Thanks.


