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Welcome in the last lecture. We had studied about two interesting architectures and they

were much deeper and then you could go up to 100s or 200s of layers over there. One of

them was residual network the other one is what is called as a densenet or a densely

connected dense residually connected networks over there. So, today we are going to do

hands on for the first perient of it which is called as densenet or very deep network with

the residual connection over there.

(Refer Slide Time: 00:43)

Now its not much of a change as far as the first part of it is concerned and these are also

some things  which take good amount  of time.  So, I  am just  going to show down a

notebook, which has most of the things which are re compiled over there and we do a

simple walkthrough of it.

Now, over here the first part is pretty simple, which is your just the header files or the

initial ones which you need to take in, and then next comes down your data over there.



(Refer Slide Time: 01:05)

Now, this particular network quite different from your unlike your googlenet.

(Refer Slide Time: 01:09)

Which would have needed you to take down 200 and then 229 cross 229 sized images

over there; so here we take down smaller ones which are 224 cross 224 and this is a

network, which has been trained to stick down exactly two my image that kind of models

and imagine it kind of sizes ok. Now here fortunately we could take down a larger batch

size and that is all dependent on how much of intermediate data my model is handling.

So, based on and then that is a pretty easy calculation based on what we had done in the



earlier lecture itself. Now you need to work it out around over there based on how much

your available ram is there.  So, while in googlenet  we had to stick down to a much

smaller batch size of 32 based on the particular card I was using over here.

So, for me with this given with the same card and the same kind of a system architecture,

I am able to get down more number of images. And here I am pretty convenient taking

down 128 images into one single batch. Now the rest part is quite simple. So, instead of

doing it with image net, we are doing with a smaller dataset called a c 5 and this is just a

10  class  classification  problem.  Now  based  on  this  10  class  classification  problem,

accordingly  we will  also be modifying the network architecture  which we download

from our model zoo available with us. Now that is this for this first part of it which is

quite straightforward and clear there is nothing much to do.

(Refer Slide Time: 02:39)

Now, the next is to look into whether the data has been loaded down and yes the same

way that we had divided 50,000 for our training set.



(Refer Slide Time: 02:46)

And then 10,000 for our testing said the same thing comes out.  So, so that is pretty

straightforward.

(Refer Slide Time: 03:49)

Now, here what we do after that is we just get down our models and this is my resnet 18.



(Refer Slide Time: 02:55)

So, this residual network is just 18 layers deep and I am choosing down only a very

smaller one. You can go down 251 layers as well pretty much, but then you need to keep

one thing in mind that your batch size will reduce and we will take much longer time to a

finish off each of these epochs. Now in order to avoid any of those problems over there, I

am just using a smaller model over here and this is just residual network 18. Now there is

also another fact that I am not trying to discriminate between multiple number of classes.

So, an earlier residual network which was really deep there is something which was done

to actually classify between 1000 classes of objects over there. Now I am choosing down

a very smaller one which is just 10 classes of objects and now just because of using 10

classes of objects I can have this liberty they are actually good and choose do not know

much smaller size network.

Now, that is what I am doing with choosing down resnet 18 and this is what you can look

down on the whole thing. Now over here we do not make actually much of a change to

the whole network and you do not have any issues of an auxilary arm or something

coming down over there. Now what does definitely come to play is that all of your basic

blocks and everything being put down together.
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The next interesting part is that your final one is something which gets down 512 as a

linearized feature vectors and the terminal lane. And then this 512 are what are connected

down as a fully connected network on 2000 years. You now this is the part which we

need to modify because we did choose that we would be going down with just a 10 class

classification problem and not a 1000 class classification problem. So, this is the only

change which comes down and quite unlike the googlenet which we had done in the

earlier session is where you had these auxiliary arm.

So,  you also  had to  modify  the  auxilary  arm,  you do not  have  this  issue over  here

because there is nothing of an auxilary arm. But given that the main point which comes

down is that you have these residual connections as well now and just by virtue of these

residual connections which are present over there.



(Refer Slide Time: 04:54)

So, your gradient is actually back propagating much easily and because of this easy back

propagation of the gradient, we do not need to worry about whether there would be a

vanishing gradient at some point of time as we are traversing down the depth over there.

(Refer Slide Time: 05:12)

Now, that is that is pretty much simple and easily done, what you need to keep in mind is

that because of these residual connections, its again made down in the same kind of a

tabular form of connecting.



So, you first build up the small blocks over there for each of them, and then you drop

down residual connection and keep on doing a parallel connection and build it up. So,

this is quite similar to how you were doing it down for your googlenets now since we are

not doing much on the data structure of these neural networks as such to do. So, and then

that is pretty much well documented within pie torch communities documentation. So, I

will not be spending much of time over there, but my most important factors to discuss

are more of related to what happens within the learning dynamics, what you need to

make a change from adapting a model from an existing one to your particular one and

further on as we keep on going over there, and what are the properties which does come

to impact.

(Refer Slide Time: 06:02)

Now, once that is done, we look into the total number of parameters and then if I go

through them you would see that as a total calculation, this particular model is something

which has eleven million parameters over there.
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Now, this is definitely a model which is almost the same size as in a googlenet, but it

does  have  much  lesser  number  of  parameters  and  by  virtue  of  a  lesser  number  of

parameters you have a model which takes less space to load. By virtue of lesser number

of  parameters  you  are  intermediate  operating  points  also  consume  lesser  amount  of

memory that is that is something which we had done for one of our networks earlier.

Now just because of this sure interesting aspect and attribute present down within the

model, you can now actually feed down much larger batch sizes. Now one thing you

know is that if you are feeding on much larger batch sizes and the total number of back

propagations over there is; obviously, decreasing. And once you keep on decreasing the

number of back propagation. So, your compute is roughly definitely going to become

faster and faster over there.

So,  one  is  the  compute  which  is  steady  which  is  for  the  forward  pass  and  that  is

dependent on the order of the sample size within your training set over there. Well then

your back prop is always dependent on your batch size. So, larger the batch size is the

lesser number of larger is the batch size the lesser is the number of batches which fix in

over there. So, the lesser is the number of back propagation you are going to do and that

is something which does the definitely come to play a very important role now here this

is what we have gone down and looked down. So, this particular network has about 11.7

million parameters. So, when we had and in the earlier theory, when we were comparing

down our resnet versus densenet and there was one of these plots which was plotting



down the total number of parameters versus what is the accuracy saturation accuracy

achieved over there. So, you did see that densenets for the same kind of a depth have

almost half the number of parameters to come down to the same kind of an accuracy

over there.

So, this is something which we will do in the next class when we compare down with

densenet and do a practical hands on with densenet is when we get down the parametric

calculation over there as well. Now the thing which you need to modify for this network

is your last layer, which is the f c. Now if we go over here this is my f c layer and this f c

layer has to be changed from this kind of a linear structure to something which connects

512 to just 10 nodes over there and nothing more than that. So, that is the change which

we bring over here. So, its a linear connection from 512 to just 10 nodes and that is the

modification,  which we do for a residual network to be used for a c power 10 class

classification problem.

(Refer Slide Time: 08:36)

Now once having done that the next part is just to copy down all of my weights and keep

it. So, these are my initial weights now I will look down what happens after my whole

training.
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The next is pretty straightforward and simple as we had done in the earlier case is to

check down whether I have a g p u available with me and whether cuda libraries and

resources are all set and running.

Now, if I have that then I can just keep on using my cuda for acceleration.

(Refer Slide Time: 08:59)

Now, once  that  is  done,  next  is  to  look into  my criteria  it  stays  the  same as  in  for

classification, we choose to stick down with negative log likelihood classification criteria

and then with adam as my optimizer. Now in the earlier classes we had discussed about



different kinds of optimizers and their features and the different attributes, which they

play  down  and  what  we  did  figure  out  that  adaptive  momentum  and  also  by  a

experiment,  we  have  seen  down  that  adaptive  momentum  and  a  general  operating

conditions is something which would take a tad bit longer to actually optimize and give

me the results. But then its something which would definitely guarantee convergence at

much lesser number of epochs as well as if you take the total time consumed.

So, your pour epoch time is increasing because your per batch time is increasing on view

of the adam optimizer over there. However, this net product of total number of epochs

into the time taken per epoch that is much lesser when it comes down to adam in order to

come down to a saturation point. So, that is that is really interesting because in terms of

how many minutes or hours or normal human time and c p u time it consumes that is

being brought down significantly by use of adam. Now once this part is done next is to

look into the network and we start training the network.

(Refer Slide Time: 10:09)

So, here what we do is go down with the same plain old rule of training it down just for

10 epochs, I do not drink it more than 10 epochs it does not play a role over here and

then although this does not take much amount of time, this network does train much

faster than googlenet which otherwise would have taken down about 8 minutes close to 8

minutes to do it. So, here it goes wrong about belly between something between 1 and 2

minutes over there. Now within each of my epoch now the difference which comes in



that here this is just one single tapped out network which means that the classification

and the losses, which you get down is only at the end part of the network its no more in

between.

(Refer Slide Time: 10:43)

So, in googlenet you had these auxiliary ones auxiliary arms coming down and for that

reason you also had to get down the losses, computed out of your auxiliary arm. And you

also had needed to a back propagation with the losses being fed down over there.

Now, we do not need to do any of those for our case over here, now here what you are

just going to do is the plain simple calculate out the final loss over there and then do the

back pope.
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Now, within each of these batches which comes down over there, you for zero down

your optimizes gradient and everything.

(Refer Slide Time: 11:20)

And then you convert your if there is a g p u or available then you convert your variables

into g p u and then type casted as a variable. So, that you can you can do your back

propagation  operations  over  there.  Next  is  you find your  feed  forward and get  your

output then you find out what is your predicted and whether your predicted is correct or

not, and then this would help you in getting down your error over here ok.



(Refer Slide Time: 11:40)

Now, once I have all of this done and my errors computed, and then done then what I do

is I do a back propagation of my loss over there and the optimizer comes into play in

steps.

(Refer Slide Time: 11:53)

So, whenever I do a step it means that the optimizer is being solved over there and my

weights are getting updated. So, this is where my weight update happens and then I have

my running losses which I just calculated and stored.
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Now, within each like each epoch over there I am passing down all my training samples,

and I  have in total  50,000 training samples over  there.  So,  if  I  need to find out my

accuracy or my loss, then I will have to take some sort of a average over there and that is

what I am actually doing over there. Now once that is done, then train a c and train loss

these are the two different arrays which I just being created dynamically. So, one array

has an entry for each epoch over there.

(Refer Slide Time: 12:36)



Now, once that is done the next part is where we need to get down my next part of it is

running, which is my validation over there.

(Refer Slide Time: 12:42)

Now, in validation what we need to keep down in mind is that one point which we said

down over  here is  false,  we just  give  an identifier  that  we are no more  training  the

network and this is for the reason. So, is that your batch normalization does not come

into play. So, typically when you are training a network you will always be trying to

normalize in batch.

So, whenever you have a batch norm coming to place. So, there is a batch normalization

taking place, but whenever you are doing a feed forward and just an inference in over

there your batch like this may be different and based on that it  will  have a different

dynamics coming out. So, the same sample if it is located at different batches based on

what all other samples are located in the batches; if the other samples in the batch are

changing, then the whole thing gets normalized along a batch and the response has a very

skewed  or  behavior.  So,  in  typically  during  infarencing  we  do  not  use  batch

normalization and that is just switched off. So, this is the very simple way of actually

switching off all of my batch normalization issues ok.
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Next what I do is just find out if my g p u is available.

(Refer Slide Time: 13:39)

Then I typecast my data on to a cuda array, such that it resides on my g p u memory and

my network can also work on my g p u and then I find out my outputs do a prediction

over there and then find out whether its correct or not.



(Refer Slide Time: 13:55)

Now, that is what you would be doing down for your feed forward on the validation side

of it, and then since there are 10 thousand samples present in my validation which get

evaluated every epoch.

(Refer Slide Time: 14:09)

So, I take an average over all the 10,000 samples the next part is pretty simple to plot it

down and there is nothing much of a change.
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Now, if you look down at how the model was working out. So, we trained it over at any

epochs it takes about 1 minute 51 seconds. So, that is about 8 to 9 seconds short of 2

minutes is what it takes down to train it down.

Now, it  starts  with an average accuracy during training  for testing  somewhere at  50

percent  and then my test  accuracy goes up to something around 70 percent.  Now in

between it was at 75 percent 73 percent as well.

(Refer Slide Time: 14:47)



Now, you would see that my training loss is what is starting at point 1 and then it keeps

on going down and down. Now while my accuracy had grown gone high on my testing

side. So, you see that it goes out goes up to 71 percent then falls down to 55 percent, then

again goes to 71 percent, then to 67 percent. Then again to 75 percent, but on the other

side of it you would see my training loss is constantly decreasing. Now one thing is there

are few people who would argue over here that possibly I am over fitting on my training

loss and that is my testing one is going down, but nonetheless you need to keep one thing

in mind that this kind of a jitter behavior over here is something which is happening,

because its possibly hopping from one minimum point to the other minimum point.

Now, that is a beauty of adam which comes to play over here, that you are not getting

locked into local minimum points, but then you can hop and you are going down towards

the global minimum and that is that is the dynamic change which you are observing over

here. So, 10 epochs get in total of 18 minutes and 38 seconds. So, that is roughly about

1.8 minute poor epoch and that is not so bad actually given the fact that when we were

trying to do it with googlenet. It was actually taking me about 8 epochs 8 minutes per

epoch and here and something about 2 minutes per epoch. Now I have a model which is

roughly one third of the model size, but much deeper and it takes me about one fourth of

the time to run it over here, now that is that is a total cumulative thing which comes

down. So, if you can really play around with your architectures you do save a lot of your

resources over there.

(Refer Slide Time: 16:17)



Now, we have our train and test losses over this you would see that your training losses

is  something which starts  lower and keeps on going and your test  loss is still  going

lower, but it does have a jittery behaviour.

(Refer Slide Time: 16:27)

On the accuracy side of it you see this whole jittery behavior between 51 percent and 71

percent and keeps on going. So, somewhere around at the end of tenth epoch is where it

sticks down to 70 percent and that is more or less where it will be seeking down because

you can see that its almost over there its roughly at 70 percent where it keeps on going.

So, you can keep on training over a longer number of iterations, which I would typically

suggest you to do and find out where it keeps on saturating. The next part after training is

to copy down my weights and then try to look into the visualization of the weights over

there that is what we do over here.
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Now, if you recall from the discussions which we had on the architecture. So, the first

layer over there is something which has a special kernels which are off span of 7 cross 7

and that is that is what we plot down over here and there are 1, 2, 3, 4, 5, 6, 7, 8 and 1, 2,

3, 4, 5, 6, 7, 8. So, it is a 64 cross 64 and then if you remember from your earlier lecture

you can you can actually flip back onto that earlier one. So, you had this connections

from 3 cross 2, 2 4 cross 224 and then you had 7 cross 7 kernels and you had 64 of those.

So, each is one of these kernels of 3 cross 7 cross 7.3 is for the input number of channels

and then you have 64 such channels which are visualized on a 8 cross 8 grid of these

kernels coming down. Now these are the weights at the initial which is at a randomized

start over there and then these are the weights which come down after 10 iterations of

training.

Now, if you look down at the difference yes there is a significant amount of difference

you  see  and  then  these  are  mole  of  like  gradient  based  changes,  which  come from

although  look  looking down at  the  kernel  its  really  hard  to  understand like  what  is

changing over there because they are they still appear as random pixels of colour.
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Now, here you would be seeing that there are certain kind of directional gradients which

start setting in over there, and then these are more of colour based detection of gradients.

Now that is an interesting factor which does come into play, but then given the fact that

we are not putting down any imposition on what is the nature of change which should

take place and how it should be taking place. The only thing which we are doing is back

propagating my gradient across the network over there. So, that is what happens and it

keeps on changing. Nonetheless to say that since this is a residual network which with a

much wider receptive field on the first layer over there.

So, you are able to encapsulate much wider aspects of the images and the objects present

in those images and that is what does play a significant role. Now see far which was a

much smaller 32 plus 32 or 64 thing which were scaled up to almost 8 times of that to

224 cross 224. Now instead of that if you are taking down very detailed images of 224

cross 224 and on which I have a level on your image straight.  So, that is something

which we will leave down to all of you guys to do its a large data set you need to need

time to download you would also incur more time to actually train down per epoch as

well. Now if you are able to download that and do over that, you would see that there

would be much finer granules or changes which would come down despite it would also

be kneading down more number of epochs. So, that is something which I leave up to you

are free to do so.



You can in fact, look into any of our other datasets which we are done with auto encoders

and stuff as well, you would be getting on a very different behavior for each of them and

that is something interesting to really keep on looking down over there. So, that is what

we have for the first convolution kernel over there.

(Refer Slide Time: 19:48)

Next week we look into the next kernel which the next layers are now 3 cross 3 the first

layer over there and then this is one of these kernels and now since it connects all the 64

over there. So, you still have one layer which corresponds to one of these convolution.

So, for one kernel you have 64 such channels which are over there and each has a spatial

span of 3 cross 3 which connects on the previous layer and since the previous layer is

giving you an output which has 64 channels.

So, here also you need to have those many 64 channels and that is what you get down.

So, these are the initial  weights before training these are the ones after 10 epochs of

training and this is the kind of changes which happens. And now these changes are really

massive these are not zero changes, these are all nonzero changes now this is another

thing you need to keep in mind.

 Now a very higher difference comes down when trying to compare it with googlenet

over there was not much of a change in majority of them and the second layer coming

down,  but  here  you  do  see  a  change  coming  down  over  there  now  that  is  that  is

interesting to explore out as you keep on going down. Now that makes me come to an



end for residual networks and then stay tuned for the next lecture, where we would be

doing and discussing about what happens with densely connected residual networks or

densenets until then.

Thanks.


