
Deep Learning for Visual Computing
Prof. Debdoot Sheet

Department of Electrical Engineering
Indian Institute of Technology, Kharagpur

Lecture - 37
GoogLeNet

Hello,  so  in  the  last  lecture  we  had  discussed  about  one  of  these  very  deep  neural

networks and this was the GoogLeNet or this was the first time that you saw that while

counting over v g unit one of the major advantages which we got. So, there were there

were two important aspects in GoogLeNet which we had done, one was that this had

different kinds of receptor field in terms of your inception models, where you could have

3 cross 3 kernels 5 cross 5 kernels and 7 cross 7 kernels. 

So, you were in essence what you are doing is you are going on over larger spatial spans.

And also, you had 1 cross 1 kernels which were trying to do some sort of a combination

across all the channels of one given pixel over there. Now, what comes out over there

was you were able to get down like different receptor fields and then which goes on

passing and then eventually, like there was this whole hierarchical combination along the

depth over there. 

On top of it next major thing was these auxiliary classification arms which allowed you

to actually do some sort of a gradient boosting or feedback extra amount of error onto it,

whenever there was a chance that the error keeps on going down such that you can train

it.

 (Refer Slide Time: 01:29)



Now, the model which we had studied was the vanilla model which was directly reported

down on the GoogLeNet paper for the first, but the one which we are going to use today

is a bit different.

(Refer Slide Time: 01:36)

So, this is the model which we are going to use and this is something which is based out

of 5 dot. So, you the link for this one is provided directly over there as well and this is

from the pytorch documentation. Now, the difference over here is that it does not have

two auxiliary arm. 



So,  there  was  one  auxiliary  arm somewhere  located  over  here  and  there  is  another

auxiliary arm over here. Now, this early auxiliary arm which was their present in the

classical model over there is something which is missing in this particular model it just

has one auxiliary arm and the main classification arm over there take it down. So, this is

the implementation which we are going to make use of today. And this is what is directly

available on pie torch for download.

Now, for the beginner part of it is pretty simple, now since it takes a bit longer to run

these ones I have actually executed them ahead of time and we are just going to do a

plain walkthrough. So, for you guys can actually clear because the one which you get it

on your (Refer Time: 02:33) depository that is the one which is pipe cleaned off all the

internal variables and anything. 

So, anyways you will have to run the whole thing over there. Now, it would take a bit

longer the earlier ones which were quite easily running down within seconds and maybe

close to a minute this one takes roughly about 8 minutes per epoch 2 get over. Now, that

is that is the only difference which comes from. So, what we have is in the initial part is

our first part of the header which is just to look into whether everything is present over

there or not, now once our header part is over next comes from the data loader over here.

(Refer Slide Time: 03:07)

Now, there is something you need to be a bit careful on the data loaded now while we

were using 2 to 4 cross 2 to 4 sized images for our VGG net. And that is what the image



net itself comes down with, but then for GoogLeNet they had to make a bit of change it

was more of with the architecture. And so, that the data does not get into the vanishing

point over there. 

So, for that the data which this particular model takes down is 229 cross 229 looks a bit

weird, but then you have to deal with it is always intrinsic property of the network which

you are using. Now, what you need to keep in mind is that, we had earlier as well looked

into this data scaling factor and instead of using imaginary data set we are using the

CIFAR10 data set for our purpose over here.

Now, what we do is all of these CIFAR10 data sets or something which comes down in

smaller sizes of 32 cross 32 sorry 64 cross 64. And then we did it to always enhance it

out.  So, today what we are doing for this  one quite unlike the VGG net value were

scaling it up to 224 this is getting scaled up to 299 cross 299. 

So, this is the pixel span for each of these images, now this part of the code is pretty

simple it just so this is my transform definition over there and then when my train data

sets over there what it does is it just looks into whether the data is available otherwise it

downloads it out.

(Refer Slide Time: 04:30)

And then you apply this transformation such that; this train set over here is something

which is which has images of the size of 3 for the 3 channels cross 2 to 9 cross 2 to 9



over there. Similarly, you do it for the test dataset as well and then your data loader is

appropriately  defined.  So,  that  you can  load  it  down from your  train  set  or  test  set

whichever you need it.

(Refer Slide Time: 04:56)

Now, once you run this one so if your data is not downloaded so apparently, we try to

flush it out every time we do a new run just to see one facility.

So, you see this one, but then you might if you are running down on a preloaded dataset

which you already have with you might not be getting down these lines over there as

well. Now, the next part is to look into the total number of samples so yes CIFAR10 was

with 60000 samples and what we had done is we took down the first 50000 samples for

training and the 10000 samples for validation. 

And then this is quite the way similar as we had done with Aleks net and subsequently

with  VGG  net  itself.  So,  there  is  nothing  which  changes  over  there.  Now, for  the

reference architecture the picture which I had shown you earlier for the model is what is

hyperlinked already over here. So, you can as well click and go into that hyperlink and

looked into the network in  a graphical  form. Now, on the other  side of it  this  is  an

unrolled version of the complete network.



(Refer Slide Time: 05:47)

Now, what typically they do is that it tries defining inception modules itself, and then

happens up the inception module with the main network and that is that is how you do it.

In between you also have these extra auxiliary arms I am just trying to yeah. 

So, conception blocks and it keeps on going to each of those a b c for each of these

layers is what you had on the table when which we had done in the earlier class and you

find the same thing written down over here, now that is a quite a big network which goes

down.

(Refer Slide Time: 06:32)



And then this one is the final part of it which is what we needed to look into it ok. So, the

final part is where you have 2000 and 48 features, which are linearized and coming out

and since it was done originally for the image net challenge. So, you had 1000 classes

over there to classify and that is why your output features from this fully connected layer

is 1000 and then you had your bias over there.

(Refer Slide Time: 06:56)

Now, the point over here is to look into what is the total number of parameters which you

will be learning. So, what we end up doing is for each of these layers we try to put down;

for each of the inception blocks and everything coming down what is the total number of

parameters and then this is a total detailing for each of them.



(Refer Slide Time: 07:17)

And once you finish it off you see that you are somewhere over here which is with 27

million parameters. So, it is 27 million 161264 parameters which are there which you

need to learn over here.

(Refer Slide Time: 07:32)

So now what we need to understand is that; since this network was originally defined for

1000  class  classification,  but  then  we  are  changing  it  down  to  just  a  10-class

classification so there has to be a modification. Now, one of the modification is what you



would do at the end of the fully connected layer over there, so at the end when you had

just 1000 classes to classify over there. 

So, instead of thousand classes you are now left with just 10 classes. What you need to

also keep in mind is that somewhere in between you also had this auxiliary arm, now this

auxiliary arm is also something which will have to modify because you cannot have

1000 classes  coming  out  of  the  auxiliary  am because  it  still  gets  down only for  10

classes. 

Now, that is where you need to modify the whole code for two different parts. So, one is

that this part which is my auxiliary arms classification output now, let us get back into

my actual network over here. So, on my network so one is this end part over there; So, if

I draw it somewhere close, yeah one is this last part which is my linear now this in this

linear one is where I will be making this 1000 to 10.

So,  that  is  the  second part  of  my change which  I  am making.  So,  I  just  make  this

connected  from 1024 on to  10.  And  then  the  other  part  which  I  need  to  change  is

somewhere up where I have my auxiliary classifications. So, let us keep on going and I

have my auxiliary inception auxiliary over here my, my auxiliary classification that is

been my ox logits. 

Now, over there I need to change this linear which takes in inputs of 768 features and

connects it to just 1000 layers for classification. So, I need to convert this one from 786

which maps down to 1000 to 786 which maps it down to 10 and that is the change which

comes over here. Now, what we are essentially doing is we are just replacing out the

structures, over there essentially with these structures. 

So, it is a pointer remapping which goes on and the rest of the transfer function keeps on

remaining the same. Now, this is what we have been doing for VGG nets and over there

it was just one arm which produces your output that makes it easier, but here then since it

is two arms which produce the output.

So, you have to make down two changes over there. Now, after that we go back with our

original form and which is just to do copy down my weights and keep them for our later

on visualization at later on point of time.



(Refer Slide Time: 10:04)

Now, once they are done then I checked on whether my GPU is available and then I

define my criterion.

(Refer Slide Time: 10:07)

So now, here we are just going to train it down following the classification pipeline and

for that reason we are just using negative log likelihood as my criteria over there. And

my optimizer over here is Adam which I am just going to follow them. 

So, these are plain vanilla dependent and then taken down in the same way as we had

done in the earlier ones.



 (Refer Slide Time: 10:34)

Now, from there we need to start training down this network. So, what we do is, you

know to keep two things in mind one is this no more has just one loss function, but it has

two loss functions which you need to evaluate.

So, whenever you are taking it down you need to have these independently evaluated and

independently either you can plot it down for your convenience, but then you need to

evaluate  each of them because the backward would require each of them to be done

independently. Now, from there we start down and this is a training which we do just for

10 iterations 10 epochs over.



(Refer Slide Time: 11:03)

There now the first part is where you 0 down all of these buffers over there and then you

start your epoch counter, now within your epoch counter we just do my train data loader.

(Refer Slide Time: 11:12)

Now, my data is getting loaded in two batches and each of my batches is of 32. Now, it

depends on the kind of a machine on which you are running whether you what you

would decide as your optimal batch size, now you can keep batches as small as even 4. 

This pretty much you can bring it down to even one based on what we had done in the

earlier  examples  on  batch  learning  versus  sequential  learning  versus  whole  epoch



learning. So, it is just differences which crop up over there and how you are going to

make use of that one. Now, other than that it is generally suggested that you keep down

your batch in a convenient way which occupies a decent portion of your half level ramp

space over there. 

So, if your GPU ram on which you are running or maybe your CPU ram on which you

are running if you can take down batches of the size of 64 then please put 64. If you are

limited by 32 or something then put down smaller numbers like 32 or 16 any of them.

So, that is totally up to you we over here have a convenient option of doing it down with

the batch size of 32. Now over here what you do is if I have my GPUs available which

for me is fortunately there and I just need to typecast all of my variables over here.

So, once the typecasting is done for the variables then I need to typecast my network

over there and then once everything is done, now you do a feed forward for the network

and then you find out what are your predictions, and then you find out how many of

them are correct whether or not ok. 

Otherwise your data is not converted any further to cuda it is it is just type casted into a

variable and then you have your forward and your prediction and these computes coming

out over there.

(Refer Slide Time: 12:42)



Now, the next part which comes out is you need to find out what is your loss and now

based on that you will be starting your back propagation over the ok. Now, once your

back propagation is done we just have our optimizer coming into play and this is Adam

for us. So, without much of an issue and then what finally, you have is something like

you are just going to take down your losses and then keep on accumulating.

(Refer Slide Time: 13:10)

And so that you can plot and actually see what is the amount of changes which come

down now.

(Refer Slide Time: 13:18)



Once that is done for epoch now within one epoch once you finished on all the batches

and everything so that is that that part is done; Now, the next part which comes into play

is that you are going to actually do a feed forward and then deploy and see down what is

the kind of a performance you get down at the end of training it features one epoch and

then with the next epoch next go. So, that is a validation part of the code which we are

running over here.

(Refer Slide Time: 13:42)

So, once that is done this is your plot function over there and just to come out over there.

So now, since it takes a good amount of time so typically it takes about 8 minutes per

yeah so this will yeah.



(Refer Slide Time: 14:00)

So, if you look over here it is about 7 minutes 46 seconds 47 seconds. So, that is roughly

close to like put 15 seconds short of a minute sort of 8 minute, that that is what it starts

down with now initially it starts with the training loss of something about 0.4 then goes

down to 0.37 and 0.3 n n you keep this one you see that this one keeps on decreasing, it

starts with the accuracy let us do it. 

So,  it  starts  with  the  testing  accuracy of  52 then goes  to  64 68 73 and it  keeps  on

increasing.  And then somewhere around 10 epoch it  is  already at  an accuracy of 80

percent.



(Refer Slide Time: 14:35)

So, if you look down at your main loss and auxiliary loss you would see that they are

steadily decreasing over there.

Now, one question does definitely come to your mind that auxiliary arm is something

which is not so deep over there it is it is from a shallower region and that is showing a

lesser error as compared to your main arm over there. Now, in that will definitely mean

that your auxiliary classifier is able to classify better than the main classifier. 

Now, you need to keep one thing in mind that this is already a pre-trained model this was

not a model which was taken down from scratch this is something which got imported

from a model  which  was trained to  solve the image net  problem, and they were all

modified for your actual natural images and how to understand. 

So, the features are possibly something which are not changing, now the only change

which was happening within your main arm and auxiliary arm was the new modification

of it which came down, although we did not put a hard imposition that we are just going

to modify only this layer at a time, but then since everything else is not going to have get

down much of an error and that error on the rest of the layers is going to be 0.

So, the only change which will happen is only at the random bits which are there in the

auxiliary arm and then newly incorporated main arm for rest of the cases. Now this is the



kind of losses which you would be seen down for your train and test and this is the

accuracy which would you would be seeing down for your train and test these two.

(Refer Slide Time: 18:48)

Now obviously, one thing you need to see is that your training accuracy still keeps on

increasing while the test accuracy is increasing, but then the rate at which it keeps on

increasing there is some sort of an influx and then it keeps on slowing down over there.

Now, my testing  case accuracy is  now already something which is  very close to  80

percent,  while my training is  something which has already overshot 90 percent  over

there. 

So, that is that is just a initial level observation because we have not yet saturated it out.

So, this has just been trained for 10 epochs and if you keep on training for longer you

would definitely come down to a much more convergent point over there. The next part

which we look into is we copy down the weights after training such that we can actually

visualize it out.

So, on my visualization part over there this is what we look into the first convolution

layer over then.



(Refer Slide Time: 16:36)

The first convolution layer which is just a 3 cross 3, convolution layers and then you had

1 2 3 4 5 6 7 8 8 and 4 that is 32. So, you had 32 channels coming out from the first

convolution layer and this is what they look like. Now these were the initial weights

which had been given over there.

(Refer Slide Time: 16:59)

Now, after you had trained it out with this particular data set on C 4 this is the change,

but  then if  you look into  the differences  which come down they are not  much of  a

differences.



(Refer Slide Time: 17:06)

So, there have been a slight changes in the shades or one particular colour channel over

there  which is  just  changing,  not something which  changes  majorly. And one of  the

reasons why the changes are really low in terms of the intensity is because the earlier

trade model was already taken down for natural images over there,  and you are also

dealing with the same kind of a natural image problem over here, now this is to look

down into the convolution of one of the kernels for your second layer now.

(Refer Slide Time: 17:31)



What do you need to keep in mind is that; since your first layer had 32 channels which

are coming out now we just had 32 which is each of these convolution layers, but this is

only for one of these kernels. Now, if you look over there for the differences as well.

(Refer Slide Time: 17:48)

You see not much of a change and a majority of them are still flat which is just 0 value

changes or near 0 value changes which comes from over there.

So, that is all what we had to do with the GoogLeNet now there is not much of things to

say around with it these days, but then the main point which you need to keep in mind is

that given that there are two different cost functions which you had to evaluate over here,

that was one of the main reasons why you did take a lot more off time. 

But then given the other fact also that despite all of this being over there you are able to

come  down  to  converges  so  much  faster,  because  you  see  that  you  had  started

somewhere around roughly a rough guessing estimate of 50 percent and then within 10

epochs you are already at 80 percent. 

So, that is a very rapid rise, now what definitely does come to play is that epochs are not

always a consideration of it because you also have more amount of time taken per epoch.

So, if you take a consideration that the product of time taken per epoch into the total

number of epochs then that that comes into an interesting place.



So, somewhere later down when we are going into more of practical buildings we will be

seeing down like, what is a more preferable network to take at a given place, given all of

these aspects and also the influencing aspect taken on over there. 

So, this was about going very deeper with convolutions with GoogLeNet and then in the

subsequent lecture,  I would be telling you about two more networks which are quite

recent from 2016 and 2017 c v p s and they are based on something called as a residual

network and residual connections and networks with very dense residual connections and

subsequent to that we will be doing their labs as well. 

So, with that stay tuned and thanks.


