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Welcome.  So,  today, we  would  be  speaking  on,  computational  complexity  for  deep

neural networks. So, one of the networks which, we have done till the last one is what is

called as VGG net or which is from one of the early versions of, deep neural network

available. 

Now, one of the parts which we had discussed till now, as with any of the networks was

to look into the feed forward behavior and then on the back propagation behavior and all

of these behaviors were just trying to look down into the linear algebra perspective and,

whatever comes down, subsequently over there.

So,  while  we were looking down into how networks  can be represented  in  terms of

matrix  operations  as  well  as  subsequent  like,  if  these  matrix  operations  can  now be

termed as some operations, which are available on tensors, from the perspective that all

of these representations in terms of my input space my weights of, the connections on the

network as well as my output, which comes down and represented as tensors then for

back propagation.

On the other side what I have is the derivative computed out, over these responses as

falling down my chain rule. Now, what interestingly comes out is that, we throughout

this whole process, we have not yet analyzed out, how much of space does it take to store

all of these intermediate matrices and the inputs, outputs and, all of these intermediate

activations or calculations, which happen down by a product on these matrices and on

top of that, how much of space does it take to, in fact, stone down all of these gradients

as well, because when you expand out of the chain rule, what you find out is that, these

gradients are not just with respect to a, your error over there.

So, there is a part of the error, which is taken down as a partial derivative with respect to

the, activation generated at the last note. And then you have the partial derivative of the

activation generated at each note, taken down with respect to the non-linearity over them,



and the linear summations output with respect to, the weights over there. So, this is how

it goes down.

So, you need to have each of these stored and then goes on and on top of it another major

part is it, you are seeing certain networks while we were training it down. They could

very easily converge, they took less time in terms of CPU time, not in terms of epochs

whereas, a few of them were taking much more time to come down to a convergence and

this was; obviously, an issue as to what and how these are going to work out.

Now, today what we are going to discuss is actually to look into how much of bites or

does it take to store all of these matrices? What will be the total memory, which is being

consumed over here? What will the total number of elements as well present over there

and, and not just in terms of these weights over there, but throughout the whole process

as well as how many number of computes go down and that has a very significant role to

play as, to what kind of a hardware you are using.

(Refer Slide Time: 02:54)

So, without waiting, for much this is how the whole thing is organized down. So, first we

are going to  look into the space complexity  of  a  model  then,  look down into space

complexity during, the operation or, for that operator as it keeps on going on and then the

computational  complexity  as  these operators  are  operating  out  on a  given sort  of  an

input. So, this is typically the three different aspects, over which we divide and, to keep it

simple, because VGG net kind of a network is quite big.



So, what I would be doing is I would give you explanations layer by layer, intuitively, we

will start down with the first and the easiest of the layers, which is a fully connected

layer and then we would enter into the convolution layers and then I will be giving you

an  example  of  how it  keeps  on  going.  So,  this  would  then  extend  on to  our  VGG

network, where you get to understand, like if you are calculating it out per layer basis,

then you sum it up and then you get down the results over there.

So,  some of  these  are  in  experiments,  which  you  have  done.  So,  you have  already

finished off VGG net, where we look down into the weights per layer and then we also

look  down  into  what  is  the  total  number  of  parameters.  Now,  this  is  a  detailed

explanation of how you calculate out exactly, the total number of parameters over there

on a pen and paper method, even before you write down your code and try to get down,

your parameters directly from within your code, form over there.

And this is quite crucial, because you would be seeing down that we just make small

tweaks around the network over there. We change the number of channels change the.

So, I like one of the examples, which I would be using is, reducing the kernel sizes; So,

instead of 5 plus 5 kernels. 

I would now, be using 3 cross 3 kernels, but then I would increase the channel width over

there and the question is like, if you are changing this one then, does it impact the overall

space consumed over there. So, these are kind of examples, which we will be looking

through ok.



(Refer Slide Time: 04:39)

So,  let  us  look into  the  first  one  over  here.  So,  this  is  about  n  number  of  neurons

connected down to k number of neurons and this is a, this is with a bias. So, this is not a

0 bias network as such. So, there are biases, but then I choose not to represent any of

these biases, because they, they are inherently taken down that for each of these output

neurons over here, you will have one-one bias connected.

So, now, if you look into the weight matrix over here, what you would see is that each of

these n neurons is connected to the, k number of neurons over there or on the other side

of it, if I look into one of these neurons. So, one of my output neurons over here is, what

will have all of these ends coming down in terms of, multiplied through weights. So,

there are n weights associated with this neuron and there is also a bias. So, there is n plus

1 number of weights which are associated with this neuron ok.

There are n plus 1 weights, which are associated with this neuron n plus 1 for this neuron

so on and so forth. It gives, goes on till here. So, in total you would see that there are n

plus 1 number of weights associated with k number of neurons. So, this matrix over there

is of the size of n plus 1 cross k ok. So, that is, what I get down over here? So, you will

have n number of neurons and k number of output neurons. This is n into k, which is the

total number of connections over there and you have k number of biases, which come

down over there and this whole thing can now, be represented in terms of n plus 1 into k

right.



So, that is what we had done now. Now, this is for a fully, connected layer. Now, this

what it essentially gives is that, what is the total number of elements which make up this

weight matrix over there. Now, it does not give me exactly what is the size in terms of

bytes. So, when you load a memory, load, load a model onto your memory. So, you have

seen that from our, torch vision, we could actually download models on pi torch and then

some of these models would take lesser amount of time to download some of the models,

take longer amount of time to roll down.

So, if I was trying to download a VGG net, it takes longer. if I am trying to download an

Alux net, though we did not, actually download an Alux net and, and in the subsequent

ones, when you will be going on into much deeper networks like Google net, dense net,

(Refer Time: 06:46) net, you would see that we will be downloading all of these models.

Now, for each model it shows you a size and this is the calculation, which we are going

to do. Now, in terms of finding out what will be the size calculated out. So, now, say that,

you have p number of bytes per element represented over here; So, then this whole thing

becomes down as n plus 1 times of k into p number of bytes ok. Now, the question is

what will leaks bytes actually represent ok.

Now, that  is  right  simple.  So,  most  of our  operations  are,  what  are  carried  down in

double precision floating point numbers. Now, per definition, double precision floating

point numbers are what are 4 bytes or sorry, 8 bytes or 64 bits in size. Now, the moment

you have 64 bits or 8 bytes over there. So, for representing one number, you are going to

consume 8 bytes. So, if there is one number it is 8 byte long. Now, instead of that if I try

to represent it in terms of single precision floating point number system, which is 32 bits

or 4 bytes.

Then,  the same value  can now, be represented  in  terms of,  half  the number  of  bits;

however, you need to remember one thing that since these are represented in terms of

your, I triple e floating point number system. So, there is a part of it, which is a mantissa

and that is an exponent and then you combine this together to counter. Now, the moment

you reduce your byte size over there, the total number of I, sorry, the number of bits

available  in  order  to  represent  a  number,  you  would  see  that  there  is  a  significant

reduction in the precision of these numbers or to subsequent numbers. What will be the

difference between them?



Now, if I go down and, and make it even further small. So, I am just going to represent it

in terms of an integer ok. Now, in terms of an integer you have, just 8 bits present down

over there and just a character type integer or 8 bit integer over here ok. So, now the

difference between two numbers, so if my lowest number is 0 and my highest number is

1. So, I can have 256 levels, in which I can divide it out over here. So, that is 256 is, is.

So, 1 by 256 is basically the precision of this number, which I can generate, by using 8

bits ok.

On the other side, if I reduce it even further, go down to just 4 bits or a nibble over there.

So, this becomes 1 by 2 to the power of 4. So, that is 1 by 16. Now, that is even further or

less. So, this is where it plays down, the precision has it's own significant impact as well

into it, but nonetheless for us as of today, it makes one of the major impacts in terms of

how much space is it going to consume.

(Refer Slide Time: 09:18)

So,  let  us  take  a  very  simple  example  over  here,  in  order  to  find  out  my  model

complexity. Now, say that I start down with a simple example, where just 100 neurons

are connected down to 10 neurons for me ok. So, f c is a fully connected layer. This is the

kind of a convention, which we have already discussed in the earlier lectures. So, if I am

connecting down 100 neurons to 10 neurons and this is some intermediate layer over

there.



These 100 neurons might be directly coming from source or they might be coming down

from any of the previous layers over there ok. Now, for my definition, the total number

of elements over there; So, this is cardinality of the weight matrix that is why I just put

down a mod symbol over here, that is equal to 100 plus 1; This side plus 1 into 10. So,

that is 1000 and 10 number of, elements present down in this matrix ok. Now, say for

any of our networks like VGG net ok, if I am looking down at the final classification

layer.

So, the final classification layer is where 4096 neurons are connected down to 1000

neurons ok. Now, in that case this whole thing becomes down something like 4 million

97000 neurons over there. So, this is the total number of neurons present down in, in

total number of elements, which would be representing my weight matrix over there that

is plain and simple.

Now, comes the question that if I am choosing down my, precision of the system. So, let

us take only one of these examples, where just 100 neurons are connected down to 10

neurons. It is a very straightforward example. Now, we will be looking down into by

changing precision, what will be the total size in bytes, which this weight matrix is going

to, occupy ok.

Now, if I do something like that I have a double precision number system. So, when I

was defining my net I  had defined everything in terms of double.  So,  now, my, my

weights in the network, my input to the network, my output from the network everything

is in a double precision number system.

Now, over there what I have effectively is, we had this p on the precision, which is 864

bits per number or 8 bytes per number and then this model had 1 0 1 0 of 1000 and 10,

such numbers present then in order to represent my weight matrix over there. Now, it is 8

bytes per number over there. So, in total it comes down at 8080 bytes ok. So, this is what

goes down with a double precision floating point number system. Now, say that I change

it and come down to a single precision floating point number system, which requires just

4 bytes per number. In that case, this comes down to 4040 and 40 bytes in total, which is

the size of the weight matrix ok.

Now, if I go even further down and come down to an integer, fixed point number system;

So, an integer number system is no more floating my number system. It becomes fixed



point number system and typically, we would just be going down as a non fractional or,

or just integer type numbers over there. Now, in that case, this whole thing becomes

down,  comes  down to  just  1000 and 10 bytes.  Now, if  you look into  it  clearly, by

changing from using an integer type system to a floating point number system. I am

consuming 8 times more of memory over there.

In fact, my model will  also be bulky and it will take more number of bytes. So, the

number of bytes downloaded is also larger. So, here while a this, this just. This simple

layer is going to take you 8 kb in the earlier case, with just an integer point number

system. This is going to take you 1 kb.

Now, you are going to take 8 times more, 8 times of more download time in order to

even download the model. In fact, when you are loading down, something from your

hard drive onto your, RAM space from us to as a store model being loaded down for

further compute, you will be taking down 8 times more time over there as well. So, this

is where the change comes in.

(Refer Slide Time: 12:54)

Now, comes the next part, which is called as the operational space complexity, for this

network. Now, we take the same example of a fully connected network n number of

neurons going down to k number of neurons and this is, network with bias itself. Now,

what would come down is that, while you are operating. You have another part of it,

which is called as Nabla of w.



So, Nabla of w is basically, the, the derivative of this weights present over there or the

derivative of the network itself now the derivative of the network which you come down

that  is  the same size as that  of the weight matrix  of the network because there is  a

derivative associated. So, it is basically del del w of y this output over that if this is my

this output over here is y and then after this you have your non-linearity.

So, you do not have the non-linearity being seen over here they are not taking down the

non-linearity into consideration because that is not a learnable parameter as such yes

there is a derivative, but then that is not a learnable parameter and when you are writing

down your code till now you have seen that first you just define your connections and

then you have your non-linearities within a forward pass being defined over there. So,

we choose the same way for doing over here as well.

So, now in, in the same logic, when you are coming down over here; So, if what you get

down is if this output over here is some y and this is an x. So, here you are going to

compute down for your back propagation del, del, del y, del w over there and that is what

is also represented as Nabla w and Nabla net. Now, that has the same size as that of the

weight matrix over here and then, you just stick down to n plus 1, times k ok. Now, what

that would essentially mean is, if I am going to store this network and operate on top of

it.

So, when I downloaded the network, I had just had to download these weights, but then

when I  want to  operate.  So,  I  will  push one input  over here;  get  these,  intermediate

calculations done and an output. So, it means that the memory space consumed by this

input the memory space consumed by this output as well as these gradients, which are

getting calculated during that provision is also something, which I need to keep in mind

and that is where this whole thing comes to play.

So, I have my weight space, the total space consumed by my weight, then the total space

being  consumed  by  my,  gradient  as  well  over  there  ok.  Now,  what  comes  down

interestingly is that all these outputs, which I am producing over here. So, I need, to store

the that is k, but then you might come down to an idea, why is this? 2 times number of k

and you need to keep one thing in mind that, mapping down these outputs, over there

you have also a non-linearity coming down.



So, that is obviously, not just this, but, but the gradient of the non-linearity, which is also

taken into consideration. So, for that I am just getting down 2 k. Now, n is which is

corresponding to this input, which comes down over here, but then I also write down 2 n.

The reason for getting this 2 n over there is, these are defined in terms of variables.

Now, in, in your pi torch program over there, you are using a package called as autocrat

and the whole purpose was to do gradient computation and one of the ways. It was doing

is that, it associates certain part of the variable for the actual path value of the variable

and then certain part of it is, what is called as a derivative or the back part of the variable.

Now, for each of these variables, it is going to do these two parts assignments. So, if

there  is  n  number of,  bytes  associated  or  n  number  of  elements  associated  with  the

forward pass, it will also have a number of them associated with the reverse.

Now, this is not exactly and acquired in all places, but then since, you are building it

down modularly with a pointer referencing going down. So, this is inherently an extra

space, which it would consume and you need to keep in mind. So, in total this comes

down to something like n plus 1 times k which is the size of this weight matrix plus n

plus k and just make twice of that.

So, this  is  a simple cardinal rule,  which can give you a rough estimate of the space

complexity  as  well  nonetheless.  Some  non  few  of  these  models  also  employ  a

compression of spaces over there and, because of this employment of a compression of

space.  So, what  helps  it  out  is  that  you can actually  store it  down into much lesser

amount of space and, and then keep on continuing. So, that is, that is a good part, which

works out as well ok.
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So, now, let us, get down into a very simple calculation. So, if I have 100 neurons, which

are connected down to 10 neurons, then this is what the whole network would be looking

down.  So,  you have  100 neurons connected  down to 10 neurons.  So,  you are,  w is

something which is 1000 and 10 and then your Nabla w is also 1000 and 10. So, in total

this comes down to a space of 2240 elements present over there.

Now, let us change this one and come down to connect down 4096 neurons onto 10000

neurons. Now, you would see that the moment I changed this space and then make more

number of neurons, something which was in the range of 2 point, 2000 in some way

2240, suddenly goes up to 8 million.

So, this is a big realization. So, if you are changing down the number of neurons, it does

increase  in  a  significant  way  and  this  was  a  basic  motivation,  which  led  to  the

development  of  convolutional  connections  as  such  in  order  to  reduce  all  of  these

problems.
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Now, on the other side of it, let us look into the operational compute complexity, which

is  to  look  into,  what  is  the  total  number  of  floating  point  operations  number  of

multiplications, number of additions, which would be doing down. So, now, over here,

what would come down is that you have, n number of neurons and then for each of these

output over here. So, if I am considering only the first neuron over here. 

Now, I will have n number of weights, which are multiplied by n number of inputs over

there. So, in total there are n number of such multiplications, which will happen. So, this

is  just  weight  associated  for  one of  these output  neurons,  which each of these input

neurons. So, that is, that is the total number of multiplications, which will happen.

Now, once I multiply it out, what I need to do over here is I have to add. So, the result of

this multiplication is still an array of size m. Now, if I want to add an array add, all the

elements in an array of size n then I will have to perform n minus 1 number of additions

over there ok, plain and simple; So, basically if I, do this dot product over there. So,

there are n number of multiplies and n plus and n minus 1 number of additions, which

will take place. Now, you need to keep in mind that there is also a bias associated with

each of them and there is a plus 1 extra addition, which comes down for that bias.

So, in total n minus 1 number of additions for, this dot product over there and another

addition for the extra bias, which comes into it and that makes it n number of additions

as such. So, there are 2 n number of operations, which I am going to do over here, per



neuron ok. Now, I have k number of such neurons with which for and for each of them

there is a 2 n number of operations. So, in total, the total number of operations over here

goes down as 2 n k. Now, you might come back and say that multiplies and not always

vector implemented.

So, they are not one machine cycle operations, but sometimes, they are recursive adds or

different ways of doing it. Now, for most of our modern computers multiplies are itself a

block, level operation. So, there is a separate, hardware unit dedicated over there within

your CPU, which  can do one  machine  cycle  multiply. The same way it  can do one

machine cycle add except for the vectorization is a significant part. So, it might just be

able  to  multiply  two  numbers,  but  in  the  same  machine  cycle.  It  can  add  down  8

numbers, 8 integer type numbers whereas, it will be able to just multiply 2 integer.

So, this is, this is; obviously, a difference, which comes down in terms of checking the

number of, operators, which it would require, but nonetheless this is a very simple, way

of finding out. What is the total number of compute complexity in terms of my operator.

So, over here I would require 2 n k number of operations going down ok. Now, let us

take this example of connecting down 100 neurons to just 10 neurons, in that case my

total number of operations, which comes down is just 2000 ok.

Now, say that I have a machine, which is running down and it can do, something like

200000 operations per second. So, what that would mean is if I have 2000 operations to

take place over here, for, for this kind of a neuron, which 100 neurons to 10 neurons and

my machine can actually do 200000 of operations over there. So, it technically means

that I can operate on 100 samples per second. So, this is where it comes down.

So, my machine will have the , if my machine has a capacity of 200000 operations per

second or simply 200 kilo operations per second and over here, I would need just 2 kilo

operation,  operations  to  do.  So,  that  is  operations  per  second  and here,  it  is  2  kilo

operations, then I can do actually 100, such operations per second. So, that is 100, such

neural computes per second. So, that is, where we come down to the fact of, if you know

exactly what is the number of flops or floating point operations or number of ops even,

when that is also valid.

We just computed in terms of floating point operations, because certain machines have,

more time consumption for floating point as compared to just fixed point operations over



there. So, if you know exactly, how many floating button operations are there and how

many floating point operations  your machine can do. So, you know per second how

many; such data points can be processed out easily ok. Now, if we have 1096 neurons

connected  down to  1000 neurons,  then  the  total  number  of  operations  comes,  up to

something like 8 million hundred and 92000.

Now, this is a significant number. So, if I still have my 2 kilo operations per second,

thing over there and I want to process this one over there; So, that would mean that, sorry

if,  if  I  have my system, which has 200 kilo operations  per second, but here I  have,

almost, 81 kilo operations to be taking place, 82 kilo operations and my system is what

has, 200 kilo operations per second. So, that would mean that almost 40 times more. So,

this would, this itself would be taking down about 40 seconds, in order to compute it up.

So, this is where it changes.

So, if you have a bulkier model more number of neurons yes, you are going down, wider

deeper everything is great, but then you are also going to take a lot of time. So, this is

what you need to keep in mind, based on what is your target. So, whether you are using a

simple CPU or your going on a GPU 1 and finally, for your deployments, maybe like for

training, you have bigger resources available, but while you are influencing or putting it

down to an actual, work, you will have to consider these significantly over them ok. So,

this is what goes down with my fully connected neurons.

(Refer Slide Time: 23:35)



The next, which comes down is actually my convolutional neurons and these are quite

interesting. So, what typically happens; let us, do a very brief revision of this convolution

1. So, our idea was that if I have a color image over there, which has 3 cross, m cross, n

and 3 is the number of channels. 

So, in the later on examples, I would replace this 3, we see. So, that you can take down

the same kind of a logic for subsequently down the line for any kind of any depth of c n

and over there and then, my total number of channels in my convolutions will be equal to

the total number of channels in my input over there and then this becomes one of my

kernels.

Now, if I convolve over, there I get one of these outputs over there. I can take another

kernel, which also has the same number of channels and same width and height and I get

done my next output over there and the size of this output is. So, the total number of

kernels, which I have is 2. I can have k number of kernels, in that case this becomes as

cray k cross m minus w plus 1 cross n minus h plus 1.

(Refer Slide Time: 24:34)

Now, let us look into the convolution layer, a bit more in depth. So, if this has c cross w

across h number of elements present over there ok, then the cardinality is pretty simple.

It is c cross w cross h. Now, it, it goes out pretty easy and without much of an issue, but

then, what would come down is that, if I have k number of such kernels present over

there then I also need to consider one part of it that, there will be k number of, output



channels. So, there is c into w into h into k total number of elements present down in all

of these kernels.

Now, along with each of these kernels over there, there is also a bias connection present

over there and this bias connection is which is very unique to each of these channels. So,

there are k number of bias connections each associated with k number of channels. So,

that makes this one as c w h plus 1 into k. Now, if you get back into your fully connected

neural network and try to look into it.  So, you remember that,  if I had n number of

neurons over here, in the input and k number of neurons on the output then the c w h is

basically, equal to n over there. So, it becomes n plus 1 times k.

So, that is that is pretty straightforward over there now, in the same logic, if we get down

into understanding that if I have p number of bytes, per number being represented, then

my total cardinality or the total number of elements over that comes down as c w h plus

1  times  k  p  bytes  and  this  is  the  total  memory  being  consumed  by  one  of  these

convolutional layers.

(Refer Slide Time: 26:06)

Now, let us get into the model complexity estimation. So, I will take down, these two

very standard examples. So, one of these examples is where I have a 2 2 4 plus 2 2 4 plus

3 channel input, connected down and this goes into a convolution with 6 convolutional

kernels, 6 convolutional channels each of 5 cross 5 with a side of 1 and a product of 0.

So, this is what I had described in the earlier case. Now, if I go down by my same logic,



which is number of input channels, which is c that is equal to three w is the width of the

kernel, which comes down from here, h is the height of the kernel, which also comes

down from here.

So, these are isotropic kernels which I am taking. So, this becomes 3 into 5 into 5 plus 1

into 6, which is the total number of channels or the total number of kernels, which are

present, for my convolution. So, that makes this one come down to 400 and 56. Now, on

the other side of it, if I change this one, I make a small, change over here and use just 3

cross 3 sized kernels over there; now, if I make this change and then I increase my total

number of. 

So, what I did is I reduced it from 5 cross 5 to 3 cross 3 and then I increase my total

number of channels to 16. Now, in that case you would see that the total size of this

weight comes down to 448.

So, you see that total number of elements is almost of the same size. It does not change

much, but then, we will have some interesting twists coming down later on. Now, let us

look into the precision of this number system and how it will impact it. Now, that is

pretty simple. In the earlier case we had seen with a double precision number system that

you have 8 bytes per number and accordingly, going down by this logic. 

So, we will have 3.62 0.65 kilo bytes coming down, if I use a double precision number

system, if I change that and come down to a single precision number system. I am going

to make use of 1.8 kilo bytes, for this total weights being stored down over there. If I

change down and go down to something called as an integer position,  our characters

region which is one byte per number.

So, that comes down to 456 or 0.5 roughly, 0.45 bytes, 0.45 kilo bytes over there. Now,

this is definitely a big change, which comes down and one thing, but you can, note down

from here is that even, if you have more number of neurons and, and larger descriptive

connections coming down, you still, your total, size of the weight matrix is much smaller

that is not large over there ok, but then we also need to understand the operational space

complexity over there ok.
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Now, for the operational space, complexity you would need some space to store this part

you would need some space to store this part. This part as well as the derivatives, which

are getting computed over there; Now, what that comes down is that c cross m cross m c

into m into n. There is the total, space required to store. This 1 then c w h plus 1 times of

k is the total weight, is a total space required to store down; These weights over here ok.

Now, what happens over here is that quite contrary to the fully connected network, in the

fully connected network.

What you had is, you had total k number of outputs being generated and you had with

each of them the gradient being stored down over there ok. Now, here what you do is you

do not have these gradients, stored down in terms of any moors linearized neurons, but in

terms of the neurons, which is existing on this space.  Now, that is the feedback, the

backward or the Nabla part of it, which gets generated.

So, that technically means, you are going to anyways require just k into m minus 1 m

minus w plus 1 into n minus h plus 1 number of space, but then, because you have to

store down your backward or the gradient operator over there, you are going to require

twice of that. 

So, this is where the change comes in to, in terms of operational space complexity, for a

convolutional neural network, and that brings us to the point that, if we look down with



just one simple example, the first example, which we had taken down. Now, your total

space taken down to operate it, out is significantly large.
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Now, while your, total number of bytes in order to store the weight was less, but then this

total space or the total number of elements, you would be storing down, while you are

operating on this, one both forward and backward is much larger and that is almost like

731000, 732000 hundred and approximately. Now, if we change it and go down to the

other model,  which is 16 channel and the 3 was the 3 cross 3 was the size of these

kernels now you look down that typically between moving from this kernel on to this

kernel we technically did not change much of the weights.

In fact, we reduce, but slightly we had just liked to reduce the total number of elements;

however, if you look into the total operational space you see that this model consumes

almost  one  million  more  parameters  than  this  model  over  here  that  is  something

significant change which you need to keep in mind. 

So, this is what would happen now. So, if you are just rapidly changing I mean do not try

to do that please keep in mind as to what is the space being taken down and whether it

would be working or not. So, now, you will get an understanding if when as we go into

deeper and deeper models as to where the change will happen ok.
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So, now comes down my VGG net over there, know at this point, I would leave down 1

1 part to all of you to ponder up, one picture will come down at the later point of time for

convolutions. I have not yet done on the computational complexity, for the model and the

reason that I have not done the computational complexity for the model is that I am

going to do it a bit later on.

 Once we are done with even deeper networks. So, that is where I will come down into

what is the total compute requirement, what is the space requirement and how we are

going to play around with that 1 ok.

So, nonetheless, so this was the simple VGG net and as we had done it over there; You

had seen that for each of these models, I had mentioned down that the total number of

parameters, but then one thing we did not, quite clearly clarify over, there is how you

come to this number of parameters. 

Now, number of parameters is equal to just the size of the weight matrix. So, you need to

compute, what is the size of the weight matrix for each of these layers and sum it up and

then you would be coming up to that. So, for this one I leave it up to you, to do an

exercise.

In fact, we have some interesting problems and assignments and assessments as well for

each of these newer networks,  which we are going to come down on, we would be



looking  into  parameter  space  detailed  completely  unrolling  out  the  model  and  then

coming up with what is the total parameter requirement over there.

So, you, you get to know even more of details over there and this is the way of how we

compute exactly and come up over there. So, as you, if , if you are going through the get

up codes over, then you will find out the little calculation also given down, of how we

are doing it. So, with that we come to an end and finally, if you want to get more details

over here. So, just refer down to the textbook that is one of the best sources to actually

get on. 

So, stay tuned, till we get back later.


