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So, welcome to today’s lecture. And while we have done in the earlier classes on some of

these introductory versions of convolutional neural networks, and trying to get down into

what is an abstraction of trying to understand a deep convolutional neural network.

(Refer Slide Time: 00:31)

Here, today we would be starting with something called as a VGG net that is a short

acronym for the group from where originate out. So, this originates out from the visual

geometry group, and that  is where the name comes down as VGG. So, while in the

earlier  lectures  we had already studied about  how the different  characteristics  of the

network as well as the, architecture and how it is linked out of the data flow happens

from. Today what I am going to do predominantly is actually to go through this whole set

of  codes  over  here  which  will  be  showing  you  how  this  whole  architecture  is

implemented, and then the learning as progresses through it ok.

So, let us let us just go through how it works up. So, the first part of here is just a set of

your header files which we are going to use for all the purpose. I am just it is the same



set of headers which are present on in all the earlier course, which we are going to reuse

over here as well.

Now, if you see that this is a run version which I am using and one of the reasons is that

this network being quite deep. It takes us substantial amount of time in order to compute

if we are just going to run through the epochs that is runs in a few minutes in order of a

few minutes actually typically about 15 to 20 minutes over there. And in order to keep it

just precise and within the time limit of our recordings I am just using a network which is

already trained out and the states of it which is preserved over here. 

So, that that does not change anything from your side because you will be provided with

an untrained network over there, which you will have to actually train it start training it

from  the  scratch,  and  then  you  would  see  how  the  network  gets  strained  and  its

performance increases over there.

(Refer Slide Time: 02:10)

So, this is the first part of it which is just my header files over there, which I need to

copy down for my own library calls  whichever I want to do.  The next part  is to go

around and do with the data. So, on my data what I use is the standard c file. So, as in

you had seen in the earlier lecture on Alex net where we had all the Alex net was trained

down for a image net kind of classification problems which has one thousand categories

in which you are to classify and all the images are of size 224 plus 224. So, here we are

going to use down CIFAR. And since the images are of size 32 plus 32, so we need to



rescale it out. And I am using the same kind of our transformation scale factor over here

which will be applying their transformations on the datas which is getting loaded over

here. So, that is just to keep it aligned with what we have done in the earlier one as well.

(Refer Slide Time: 02:53)

.

And now that is just my train loader and my test loader, so both my data files get loaded

over there and then you see that the files are present, so it is verified.

(Refer Slide Time: 03:02)



And finally, we run down and check down what is the total number of samples, so that is

quite same as we had for our CIFAR10. So, 50,000 images on the training sample over

there, and 10,000 images for my testing and that is what I am going to start working on.

Now, you had seen down in Alex net it was quite easy because you could actually call

down your models over here and that is a library within torchvision.

(Refer Slide Time: 03:25)

So, within torch vision you have a definition architecture over there available within the

function called as models.  So, here I  just  need to invoke my call  to VGG 16. Now,

VGG16 is basically that layer which has sixteen learnable parametric layers in total, and

then that is the one which we are going to choose.



(Refer Slide Time: 03:31)

So, once we have this model loaded down and then I can print and look through it. So, if

you see through it you would see your it is sort of like one by one blocks which are

connected down as in your VGG. So, the first block was a battery of two subsequent 2D

convolutions and finally after that you have max pooling operation coming down and

then again 2D convolution.

So, the first one is what converts down from 3 channels onto 64 channels, so that is the

battery of filters which you have within the first convolution layer. Each filter is of size

three cross three with a stride of one and a padding of one which means that whatever is

the size of the input which goes over here, the same is the size of the output which comes

out from this 2D. 

This is what happens in essence over here. Now, then you have a non-linear function

which is ReLU and subsequent to that you again have a 2D convolution which maps

down 64 layers which come as an output from the earlier 2D convolution onto another 64

layer. So, there are 64 such unique kernels which get defined over here. And your kernels

are again three cross three in the specials size, it has a stride of one and a padding of one

as goes down good.

So, in the next version what I do is we have ReLu again put down as a non-linearity, and

then you have a max pooling operation coming down over here which is the two cross

two max pudding. And then subsequent to that we have 2D convolution and then again a



ReLu and then again a 2D convolution and then a ReLu. So, this is the second battery

which comes down whereas, this max pooling has now reduced on the size by doing a so

it uses a max full kernel of two cross two and with the stride of two; and for that reason it

just reduces to half of the size.

So, from 224 across 224 which was the spatial size and the output from here you get it

reduce to 112 plus 112 at the result of this particular block which is being called down

and then that 120, so 112 cross 112 sized image is or that block over there. So, there is it

is 64 number of channels and 112 cross 122 with the spatial span over there. 

Now, that is again convolved with 128 unique kernels in order to get 128 channels or

slices coming down on the output. Each kernel is of size three cross three with stride of

one comma one, and a padding of one in place and then you have your ReLu coming

down as a non-linear function.

(Refer Slide Time: 06:14)

Now, we do not have any further max pooling over here, but that again succeeds by

another battery of 128 convolution kernels, each of size three cross three, and stride of

one comma one and padding of one comma one. So, that would mean that the resultant

of this one is also of a special size of 112 cross 112, subsequent to that you have your

ReLu and then a max pooling which brings it down to half of the size. So, that makes it

56 cross 56 because now the size and style. And then you keep on doing that.
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So, over here you again have in the next battery, you have three convolution kernels

which would come down, and subsequent to that you have your next max pooling.

(Refer Slide Time: 07:00)

Now, following that you again have three convolution kernels coming down over here,

and then  again  a  max pulling.  Subsequent  to  that  you again  have  three  convolution

kernels and then max pooling ok. Now, over here as a resultant which comes down this

has 512 such channel channels across the volume which is coming out over there. And

then in total if you look into the total number of neurons present over there, so that total



number of neurons after linearization is 25088, 25088 such neutrons. So, this in the first

fully connected layer is what connects it down to 4096 neurons. 

Then we have a dropout which uses a 50 percent dropout ratio over here. These 4096

neurons are again connected down to 4096 neurons, and then you have a 50 percent

dropout coming down over here. And finally, these 4096 neutrons are again connected

down to 1000 neurons. Now, this is your VGG net in the classical style.

(Refer Slide Time: 07:44)

However, the kind of data which we are using in CIFAR10 that is a 10 class problem. So,

if you just have 1000 neurons over there, it does not make sense because it will not be

learning for 990 neurons it will not have any data to train it done because those classes

are just missing over there. So, in order to do that what we are going to do is just a tag bit

of modification this is still untrained. So, it does not create any sort of a problem inside

over there as well. And for that what we do is we keep on modifying this one.

So,  first  point  is  just  delete  out  this  last  layer  over  here,  and then introduce  a  fully

connected connection between 4096 neurons to 10 neurons and that is what will solve it

out. So, that is what is exactly introduced over here. And now if you print your whole

network, so you would be able to see that the last layer is now which connects on 4096

neurons onto 10 neurons and quite simple and sweet solution to this problem ok.
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So, now we have our VGG net which is modified onto take down and classify up to 10

neurons. Now, with this modified architecture which just classifies it onto 10 classes and

not 1000 classes as far as you know originally measure problem, we need to find out

what is the total number of parameters which goes down. So, for that I will be looking

into my first layer. So, my first layer basically has three cross three kernels, and the Z

direction or the number of channels in that kernel is also three because that matches

down with the number of channels present down in my input image ok.

(Refer Slide Time: 09:14)



And there are 64 such unique number of corners, which are present over there, so that

makes it 64 into 3 into 3 ok. Now, with each of these 64 conducts, you also have a bias

associated with it and that is this 64 number of biases which comes down. So, this is for

my first layer ok. My second convolution layer will have the input over there has a depth

or the number of channels of the input data is 64, the spatial span is three and three still. 

So, this becomes 64 into 3 into 3. And I have 64 such number of unique kernels coming

down, so that makes it 64 into 64 into 3 into 3, and I have one bias associated with each

of these kernels over there, so that makes it 64 additional biases. And then this is what is

added down. Subsequent to that, I connect down 64 channels on 228 channels with the 3

cross 3 convolution kernel and for each channel I have 128 biases and so on and so forth

I can keep on going till I reach down a point over here which is my end of convolution

layers.

(Refer Slide Time: 10:13)

So, beyond that what I have is a connection of 25088 neurons 24096 neurons and for

each of in the fully connected layer, so that is the first fully connected layer which comes

down.
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So, you have 25088 neurons connected down to 4096 neuron. And each of these 4096

neuron also has one-one bias coming down over there and that is this additional 4096

which gets added. Now, 4096 neurons are again connected to 4096 neurons, and then you

have an additional bias of 4096 number of elements. The final one is which connects on

4096 neurons to 10 neurons. And for each of the neuron you have an additional bias

which comes down over here.

Now, if you take down a total of all of these parameters, this is what it comes down. So,

that is closely about 134 million parameters. So, this is number so somewhere over here

is your dot if you would like to put that. So, this becomes 134 dot 301514 into 10 power

of 6 or 130 roughly about 134 million parameters over there.

If  it  was an original  VGG net which has 1000 neurons to which it  was mapped,  so

obviously that would be a larger value. Then instead of this n over here, this becomes

1000, the number of biases over here also become 1000, so that is the change which

would happen if we move it over to a standard VGG net for the image net kind of a

problem. Now, once this is done, my network is completely established. Now, what I

would like to do is that just copy down my random bits and keep it for my use if I want

to do anything.
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And then typically  as with the earlier  examples  I  was actually  visualizing  a dot and

trying to show you how these things are changing over there ok. Now, following this

what I do is actually check down if my GPU is available. Now, if my GPU is available

then I can get it running and started on the GPU itself.

(Refer Slide Time: 12:03)

So, once having done that the next is the classical thing which is to look down into what

kind of a problem I am trying to solve. So, here the kind of a problem is a classification

problem. So, the cost function which I am going to use is going to be a classification cost



function. And for that purpose we make use of the negative log likelihood cost function

over here. And then finally, I have my optimizer which is to be used and this optimizer

which  I  make  use  of  over  here  is  the  Adam optimizer  plain  simple  Adam adaptive

momentum optimization over here. Now, this solves my part of the loss function and the

optimizes which I am supposed to use.

(Refer Slide Time: 12:40)

The next part is to look through my network ok. So, what I do with in my training part

over that. So, till  here you had your network defined the total  number of parameters

taken down your GPU availability check, and then you our training and loss function is

defined.  And the next  part  is  quite  straightforward  that  you are going to  look down

through the whole training process. 

Now, the training process is in no way different. And by now you should have been

getting used to an accustomed that the best part of all of this is that it is too modular in

structure. So, you can just have all of these definitions taken down and kept down over

there. And based on whatever is your network definition in your net just changing that

definition is what solves the rest of your problems over here so not nothing major to

change as such. So, over here what I do is I start my iterations or my number of epochs

over there within each epoch I just initialize my timer.
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And then what I do is I start my training data loaders. Now, if my GPU is available then

its type casted as a cuda variable, so that it is available on the GPU as well.

(Refer Slide Time: 13:45)

.

And then after that what I do is I zero down all the gradients within my optimizer, the

first step of just zeroing down gradient so that we do not have any residual gradients

pumping through the network over there. The next part is doing a feed forward over the

network which comes down over here.
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Once your feed forward is done, you have these outputs available over there you can find

out your loss function. Now, your criterion over here being a negative log likelihood. So,

we needed to take a logs of max transfer function over there as well and then you can

convert  and  then  you can  actually  find  out  what  is  the  computed  value  of  the  loss

between your output and the labels. 

So, whatever thing was predicted over there with whether it was matching down your

labels or not ok. So, once your loss is there, next we need to find out what is nabla of the

loss from nabla of g or the first derivative of the cost function and that is what we need

and that is what is computed using the backward operator over here.
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And finally, once the loss is computed, you need to do your back propagation, so that is

with the optimizer dot step running around over there. And then over each batch, we are

supposed to just sum up or what is the total loss coming down ok. And then the average

loss is what is divided by the total batch size which gives you the standard average loss

coming down. 

And then what you can do is create an array of training loss, so that at every epoch you

know exactly how the loss was moving down, and what was the loss at the end of every

epoch during an epoch of training.
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Now, once that is done, the next part is to look into the validation. And what we make

use of over here is the standard validation set which we have access to. So, this is the test

data  set  which  is  available  over  there  which  has  not  been  used  during  the  training

process. So, what we do is we just run down our data within the test loaded part over

there. And then if my GPU is available then type casted onto my GPU things. And then

once the type casted variable  is  available  in terms of cuda or available  on the GPU

memory, I can do a forward pass over the network and then get done whatever is my

predicted value of the class which comes down and that is the result of this max operator

coming down over here.

Now, once it is predicted down, what I do is just convert it onto my CPU and bring it

back over here such that I can do the rest of the calculations. The rest of the calculation is

pretty simple that I need to compare whatever is my predicted value of the label whether

that is the exact value of the label on the data which I am using over there. And if it is so

then that is correct so just pick a sum over all of them and that is going to give me the

total number of correct things I have done and that is out of one thou[sand] that is out of

the 10,000 samples which are available in my testing data. 

So, if I divide this by 10,000, I get down my average accuracy coming down over here

and then I just decide to put down my average testing accuracy poll epoch in terms of an

array which I can use it for subsequent inferencing over there.



(Refer Slide Time: 16:22)

Now, the next part is pretty simple. So, this is just to plot down your training errors as

well as your validation accuracy over there. So, while your training error is expected to

go down, your validation accuracy over time is expected to go up as it comes down, and

then this just keeps on printing it out.

(Refer Slide Time: 16:31)

So, now once you train it down, you would see that it does take a significant amount of

time.
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So, an epoch takes roughly like 15 minutes or 17 minutes of time going down over there

and for that reason we had just chosen down only five epochs. Now, you need to keep in

mind so networks like Alex net or LeNets, they are much smaller in size and then the

number of compute which happened down is much smaller. Whereas, over here you have

large number of computes, the total number of parameters which you are learning the

total number of parameters which get updated over there is also large. And it says for this

reason  that  you  are  going  to  take  down more  amount  of  time  deeper  networks  are

computationally expensive.

But  then later  on when we get  into studying down even more  deeper  networks  like

residual networks and other soft like you will realize that it is it is not always necessary

that you need to have a lot of parameters only if you have a deeper network it is just by a

mathematical scaling of the width of the network which is also a critical factor in terms

of determining the total number of parameters which you have to tune as you go across

the network.

Now, if you look into it you start with the training loss initially of 0.02; within the end of

first epoch it drops down almost to half of it and then it keeps on steadily the declining

over them. The accuracy starts roughly at 56 percent, but you need to keep in mind that

when the network was initially started down and then we had batch updates which were



going  down.  Now, my  batch  size  over  here  which  I  had  defined  within  my  loader

somewhere over here is 64.

(Refer Slide Time: 18:11)

Now, I  have  50,000 such samples  available  and I  am loading those  into  number  of

patches, which is 64. So, I get down basically 50,000 divided by 64 number of updates

happening within each epoch. So, after that many number of updates, so that is that is

roughly 50,000 divided by 64 is about 8,000 of updates which go down over there and

with that many updates happening down within each epoch, you already raised to or

accuracy of 56 percent at the end of the first epoch when it stops training ok.

Then you go down to the next epoch and you see at the end of the next epoch, you have a

jump which is almost 16 on almost 15 percent above the earlier case and goes down to

about 71 percent. From there, it has a 6 percent jump going down to 77 percent from

there a 2 percent jump to 79 percent. And then it somewhat comes down to a point of

where it might be hitting down saturation. So, this is the point where you can still keep

on training playing around with the learning rate over there, may be reduced to learning

it and then you would see this increasing over there.
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So, what happens down on my last curve is my last curve is still monotonically looking

like it is going to decrease significantly.

(Refer Slide Time: 19:22)

.

Although my accuracy comes down as if it is going to saturate out; however, this is a

whole trade off. So, my slope of accuracy increased does not become so high; whereas,

my errors which are back avoiding and still tuning out my weights are significant. And

then what I need to do over here is basically fix down the learning rate such that it keeps



on coming down to its actual global minimize sort of getting stuck in the local minima

over there so that is what we had already discussed earlier.

(Refer Slide Time: 19:52)

And then finally, what I do is on my model which has been trained over here, I just copy

down my weights, and keep them and then try to visualize it out.

(Refer Slide Time: 20:00)

So, my visualization routine is the same as we had done in the earlier case.
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And the first model is to look down into this first set of convolution layer; So, the first

convolution which connects down your image space onto 64 channels over there.

(Refer Slide Time: 20:16)

So, what I do technically is each is a 3 cross 3 kernel and that is why you have this 3

cross 3 patches. And then you have 1, 2, 3, 4, 5, 6, 7, 8 patches over here. And similarly

you have 8 number of rows coming down as well and that makes a total number of 64

patches  which  corresponds  to  64  unique  kernels  which  has  been  learnt  by  the  first

convolution layer over there. And each takes in at gb or three channel inputs ok.



Now, from there these are the weights which were at the start of the training or what was

randomly available down to everyone for use. Now, this is what happens at the end of

training off all of these five epochs. By the time it has reached almost till 80 percent of

an accuracy. 

Now, it still does not quite make sense because you do not you are not able to see down

figures, if you had larger size kernels, you might be able to make sense of what kind of

wavelets  these  are.  But  these  are  some  sort  of  feature  extractors  quite  similar  to

convolutional extract feature extraction with wavelets, which are quite useful and these

exist from the color space as well. So, but looking down into my weights, I can see that

there have been decays there have been certain number of weights which had a different

kind of a change.

(Refer Slide Time: 21:26)

So, they were not shades of the same color which were changing, but they actually end

up getting a different color as well so that is that is what we have over here in this one in

this one, in this one, this one and then you see significant amount of change coming

down. And then this in total makes down that the change which happens, although you

do not see it evidently in terms of getting down very crisp or kind of a structure, but

although the structure is not very crisp and geometrically what can be defined down, but

what it  learns is  necessary in order to actually  wire down all  the neurons which are



characteristic of a certain kind of an object. And that is the reason why this group of

neurons would be helping you in classifying the whole process.

So, later on in the lectures, when we go down we will also be looking down how to track

down on how these neuron activations are, and then what is the area from where a certain

kind of an activation is coming down in order to find out what regions of an image are

what are very significant of a particular kind of a class of object. And can we actually go

down to understanding from a classification problem like which attributes of an image as

they  appear  visually,  and  what  is  important  and  significant  in  order  to  classify  it

belonging to that class.

(Refer Slide Time: 22:33)

Now, this is for my first layer over here. Then I go into looking down into my second

convolution layer and what I choose over here is to take down my first kernel of my

second convolution layer ok.  Now, on the my first  kernel of my second convolution

layer, I have 64 channel output which comes down from my earlier convolution layer.

And all of these 64 are mapped down to a kernel over here. 

So, there is technically this kernel is a 64 cross 3 cross 3 in size. And what I choose to do

is I take down one of these kernels of the first cornel over here, and then I just display

each of these channels as individual blocks over here. So, that is how you see them in

grey scale shades over here. So, there are 1, 2, 3, 4, 5, 6, 7, 8 of them, and there are eight

rows over there and each of these is a 3 cross 3 that is for the purpose of visualization.



(Refer Slide Time: 23:21)

So, this is my initially random light randomized things. This is what comes down after

training  over  five  epochs.  And  then  if  we  look  into  our  changes  or  the  differences

between them, then this is the kind of difference which comes down. So, all of them have

been exposed to certain kind of a thing and in fact, for a lot of them you do see a gradient

kind of a behavior. So, this is where there are almost horizontal gradients coming into

play down a significant role in how they are changing this is where you have some sort

of a vertical gradient as well.

So, these in total is what happens down when training it down with a VGG in it for the

first  few layers.  And although it  takes  a  lot  of  time,  and then it  does  have a  lot  of

parameters and subsequently the number of computations which you do, but it is it is

always nonetheless fine. And one of these models is what was a ruling model for a longer

period of time you have other options of going down to a VGG 19 as well, so that is up

to your exploration.

So, I leave it up to you what you need to basically change is going to the documentation

of torch vision and look into your models part over there. And then once you have it, so

what you can change is here where you are just referencing it out. So, if you want to go

down with the VGG 19, you can just write it as 19. You go down with any other models

available over there you can just pull and do. So, in the subsequent ones where we do

some of these very standard models  and trying to  understand their  implement  issues



while we have also already covered down their theory aspects over there. They will be

getting you into details of how to recall over there and how to modify and these are all

models remember which are not trained initially, these were all randomly initialized and

then available from scratch.

Whereas, on the models over there on the standard release library you also have trained

models which means that they have been already been trained by imagenet for a large

number of epochs by the time they reach down the saturation accuracy of somewhere

more than 90 percent. 

So, somewhere about 95, 97 percent over there and those models with the train weights

are  also  kept  down for  use.  And  that  is  in  a  later  point  of  time,  when  we go  into

understanding domain adaptation and transfer learning is where we will be making use of

them; So, till then stay tuned and while we resume back for more deeper networks as

well.


