
Deep Learning for Visual Computing
Prof. Debdoot Sheet

Department of Electrical Engineering
Indian Institute of Technology, Kharagpur

Lecture - 33
AlexNet

Welcome so, today we are going to discuss about one of these are deep convolutional

neural networks called as AlexNet which actually bought in the biggest amount of

change and brought in deep learning on to the password. So, it is roughly about a decade

or close to a decade hold and this network as it goes down. This was one of the first

versions of a convolutional neural network which was brought it to solve practical

problems and practical image problem.

So, one of the challenges which was faced on by the community and which sort of

decade in a standardization contest across all of them in computer vision was to do a

large scale image object recognition and that is also called as the image net challenge.

So, consists of 1000 object classes and this images which are used on the image net I

know more of small pack size of say 32 cross 32. But, these images and now of a larger

size and that is 224 hours, 244 and 2 and that is called as images so, there are 3 channels

over there. But, anyways if you look down between your standard cifar like images

which were 32 cross 32 and then you compare it with 2 these images over here which are

224 cross 224.

So, that is a 8 fold increase across each axis itself and that is would map down to almost

like 64 times or 70 times or even more of the area increase over there. So, the amount of

information which you have contained in this image is much larger than the amount of

information which you had in the images which are solved in the earlier case. And this

224 cross 224 sized images or what have proven down and have taped the way for these

deep convolutional neural networks to actually come and be part of the world.

So, we are going to start with that first model and that is called as AlexNet, we have

already discussed about it in the lecture theory over there.

(Refer Slide Time: 01:55)

So, today what I am going to do is just walk you through the code and then get it started

and running, ok. So, the first part of it is just to load up all the libraries which we need

over here.

(Refer Slide Time: 02:08)

And the next part is to get into my data. Now, for the purpose of just for the sake of

similarity and keeping it easier, I am just going to stick down to using my cifar data.

However, you need to keep one thing in mind that AlexNet over there is going to take

largest size images and not 32 cross 32. So, we need some way of converting all of these

32 cross 32 into larger size images of 224 cross 224 and for that purpose we are just

going to use an interpolation later down over here.

Now, what we do for that is we also need to define down whether we are going to put

down some sort of a transfer over there. And this transform which we take down within

our test loader is going to help me actually get down an image which is offer design size,

whatever size I have designed over there. And the size which I designed over the here is

to get down a 224 cross 224 sized image coming down over there. Now, I load down

batches in back size of 512 and that is for our similarity and inconsistency purposes. So,

let us load down all my training and the test data in terms of using just my data loader as

I have done.

So, since I have my CIFAR10 data set already downloaded over there so, I can do it.

However, there is another interesting point which comes down because you have just 10

classes of objects in CIFAR, where as image that was typically what is defined on for

1000 classes so, but what do we do is quite interesting ok. Next, let us just look into what

is the size of these. So, I have 50,000 images on my training set and I have 10,000

images on my testing set from cifar, great ok.

(Refer Slide Time: 03:35)

(Refer Slide Time: 03:41)

Now, there is an interesting part over there that we might not need to actually defined on

the whole network AlexNet, there are from scratch ok. What we can do is we can make

use of the predefined models, which are already available within my loa within my

(Refer Time: 03:55) libraries over there. So, once I get down over here you would see

that I have actually use this particular library from my torch vision. So, I have called on

models which I pretend models which are available down and that is within my library

called as torch vision and this helps me to call down any architecture which is already

defined over the web.

So, what we do is just we say that my network is actually AlexNet which is residing on

my models it is there. So, I am just save down from the pain of writing down the

architecture and the forward pass function over there. Now, what I do is I just take a print

in order to see whether that is what exactly was looking down for.

(Refer Slide Time: 04:35)

So, you remember from here AlexNet things that what you had was that the first

convolution layer is what takes in a color image over there and has 64 channels to

produced on the output. The kernel size of the first convolution layer is 11 cross 11 you

have a side of 4 comma 4. So, it hopes by a factor of 4 and you have a padding 2

available over there.

Then the transfer function over there is a ReLU, following that you have a MaxPool

operation which has a pooling size of 3 cross 3 in which it is going to pool and pool with

the side of 2 comma 2. So, these are very different from any of the earlier networks or

even LeNet which we had seen where you were just sliding down on the pooling by the

same factor which was the size of the kernel for your max pooling operations.

So, that is quite different from the earlier one. Next, what we have is we connect down

64 channels on my output from the first convolution layer on to 192 channels over there.

And then my kernel size changes it comes down to 5 comma 5, 5 cross 5 kernels. I take a

lowest stride and actually a fully connected stride over there. So, I do not actually hop

down while trying to do this convolution, I am just sticking down to 1 comma 1 stride

over there with the padding of 2 comma 2.

And this is just to ensure that the my boundaries and my sizes are quite consistent on

what comes down. So, then I have my ReLU and then following that I have a MaxPool

and this MaxPool also replicates the same behavior of this max pooling which I had in

the earlier case.

Now, following that I put on my convolution kernel which converts on 192 channels on

to 384 channels and the kernel size is 3 cross 3. So, this reduces down from 5 cross 5 to 3

cross 3. So, you had seen that the first kernels which I had were 11 cross 11, then 5 cross

5 and 3 cross 3 and you can just refer back to the earlier lecture on AlexNet in order to

check this consistency with what we had done over there. So, while we had also

discussed like how the data would flow, what will be the size of kernels and what will be

size of the data following operations. So, that is what is happening over here.

Now, a convolution thing ends over here which is also called as the feature learning other

feature extracting convolutional feature extract or part of my network. Following that I

just have my classifiers which are more of the sequential connections over there. So, in

these sequential connections what I have is initially I have a dropout layer ok.

(Refer Slide Time: 06:42)

Which has a drop out of 50 percent introduced over there and then that connects down

9216 neurons onto 400 4096 neurons. So, the resultant over here is basically something

which is spent over 256 channels and in total if you look into your x, y spans over there

and just some of the total number of neurons which will be uniquely available that some

comes down to a number of 9216.

Following that I again have my ReLU as my transfer function and then I dropout of 50

percent following that I connect down 4096 neurons onto 4096 neurons and a ReLU, but

no more dropout and it is just a connection from 4096 to 1000 ok. It is great looks quite

nice and interesting because this is the standard AlexNet architecture which we had.

However, keep wanting in mind that we have cifar and not image net data available to us.

So, the labels over that the categories, which we have with us is just 10, it is not 1000

categorical label. So, if we are trying to train a network it will never workout, your cross

function will just blot out basically that is a problem. You know you do not have 1000;

you have just 10 over there. So, 990 such neurons are just going to be erratically firing

up and you do not have a control over those 990 neurons for which you do not have any

labels available. So, you need to make a change over the network over here and I mean

that that is what we do in the next part over there.

(Refer Slide Time: 08:17)

So, what I try to do is basically I remove this last layer which connection 4096 neurons

onto 1000 neurons. So, that is that is what has to be removed out and from there I just

need to add down another 4 new connection of 4096 to 10 neurons over there. Now,

since the network is not trained or anything, it is just randomly initialize network which

is available to me. So, this change also does not bring any change on to the

characteristics of the network in anyway.

So, let us just make this change and just looked through this one. So, you see that this

convolutional part over there for feature extraction remains the same. You have your

connections coming down over here and then I have removed out this 4096 to 1000

which was present over here. And then I have just introduced the connection of 4096

neurons onto 10 neurons and that pretty much closes my loop over here. I have my

classified part defined and then my network is now consistent to operate down on my

cifar 10 data sets.

(Refer Slide Time: 09:14)

So, let us look into the total number of parameters which are present over there. So, this

is what we had done.

(Refer Slide Time: 09:18)

In the earlier case when looking at LeNet and trying to make a whole distinction of the

weight space over there now, if you look into this kind of AlexNet over there you see that

we have something like 5,70,44,810 or if you just go down by the metric system then

that is about 57 million parameters. So, this is where your 1000 score down, this is where

your million comes into play and then you have 57. So, it is 57 into 10 power of 6 so, 57

million parameters which you have to train over there. Now, the network does not look

complicated to most of you; however, you see that the number of parameter is really

large and then that is what happens.

(Refer Slide Time: 10:55)

So, in the next subsequent lectures you will doing even deeper networks which are called

as a stand with VGGNet as an example over there, which place you will see even even

more number of parameters coming down over there. So, the number of parameter is

really high and thanks to one of the points that the number of convolution kernels you

are taking down at every layer that being really large to the number of parameters have to

be high. There is no other way of going around with that ok.

So, that goes around it and then what we do is we just end up copying down my weights

which are the initial random initialization weights which are present over there. So, let us

let us do that so, at this part we are just going to copy down all my randomly initialize

fetch, which I have over here such that I can reuse when I am trying to look down what

happens at the end of my training process.

So, let us just run this part and that is where my weight to get copy down and kept down

for me and the initial part of it. And then later on after the training process we are going

to make use of them for visualization purposes. Now, the next part comes down where I

just see if my GPU is available, since if GPU is available then I can just make use of my

GPU coming down over there I just fits on for the pooling to happen down if it comes

out yes. So, my GPU gets detected and it is available and quite set down to run on this

one.

Now, for this to be a classification network what I am going to do is my lose over here is

no more emissive or any of them, but it is just classification loss and I am going to make

use of negative log likelihood cost function over there. the optimizer which I make use of

Adam and that is based on a historical evidence and the earlier lectures, where we had

actually pulled across the space of optimizers at to find out which of them is the best

possible optimizer to work out. So, we run this part and that is done.

(Refer Slide Time: 11:39)

And then I get into my training, now since this network does take a bit of time to train I

will just set this one running while we keep on discussing about what goes down inside

the network ok.

So, now if you look through this training procedure , I am just using 5 iterations for it

and that is just for the sake of sticking down to our time limits over there and not just

over shoot it out. Now, if you have an of time and in fact, like when you are doing it on

your own site, I would tell you that keep on training it now. And if you want to write

really look into what an AlexNet? How long it would take? You are suggested that you

actually trended down for more than 10,000 number of epoch and use an actual image

net kind of data in order to do it and not just take down for cifar network coming down.

So, within my training system over here I have my epoch which goes down within the

epoch, what I do is just find out if my GPU is available, then convert it on to a GPU

availability and then have my inputs available over here. Now my input is both the in

which comes from as well as the categorical label over therefore, whatever classes

getting define and then for since I have 10 classes over here. So, it is 10 classes which

are present down in my label.

(Refer Slide Time: 12:49)

Now, what I do is 0 down my gradients whichever is present inside over there do a feed

forward over the network and then find out my loss. And the loss over here is computed

after logsoftmax over my whole transfer function and the output and converts it down to

my labels which I pres have over here.

Now, once I get down my loss as in the loss of classification at the end of each epoch I

am just going to find out what is the derivative of that loss on that side nabla of the loss

function ok. Once that is done we run down our step function which is do to do a one

step of a back propagation across the whole network over there. So, that is going to

propagate across my fully connected and my convolutional connection layer. So, over

that completely and then I accumulate of accumulate losses over the whole patch which

has been coming down.

(Refer Slide Time: 13:31)

Finally, coming down to getting an average training loss for each epoch and then I just

create an array of this training losses to look down what happens across all the 5 of them.

(Refer Slide Time: 13:44)

Now, once I have done my training over there using my training data, the next is to

actually look down into the performers validation. Now for that I am going to make use

of the earlier case which was just 10,000 images from my testing dataset and how good it

performs on each of them.

So, what I do is initially low down my inputs over there from my test loader and once I

have my inputs available, I do a feed forward pass over my network and then get done by

predicted value coming down over here. Now, this prediction over here is not the value,

but that is a index label over there of whichever has the maximum value stored over

there on the maximum probability.

And then if your value matches down the exactly label over there, then it is correct

otherwise it is wrong. And then since you had 10,000 such images or 10,000 samples in

your test data sets. So, the average accuracy is the total number of corrects divided by

10,000 and that is gives you the total number of correct measures on the average which

has been made down.

(Refer Slide Time: 14:39)

So, once that is done I have my average accuracy for testing case taken down. And then

over here I have my same old repetitive plotting functions, which can be used for

plotting down my cos functions. While I am training on the training data set as well as

looking down on my accuracy which keeps on increasing expectedly, which is supposed

to increase down as I am training it across the number of epoch over there and finally, to

print out what comes over here.

(Refer Slide Time: 15:06)

So, now that we have kept on running this part of the trainer and then we are seeing what

the trainer consist of so, let us have a look into how it has trained out over there.

(Refer Slide Time: 15:13)

So, if you look over here we have just change it for this 2 iterations and for the sake of

time it takes quite a long amount of time. And that given down that your AlexNet which

you have over here, that has a significant number of convolutions which come down and

then you are fully connected layer and that makes it really complicated to work it out.

So, here when I have this train down, you see that they has it been much of a change over

the loss, but then and as well as the accuracy has not increase. But, given the fact that

this is a very deep network which you are going to train, it will take out more amount of

time in order to do that. But, the final convergence accuracy is are expected to be much

better than what you had with lesser number of neurons along the depth. So, because

when you have a network which is much (Refer Time: 15:59) not with so, many number

of neurons over there.

So, the total number of trainable parameters is also less. The lesser the number of

parameters it is much easier and faster to train it. However, the hierarchical complexity

in which it can input data with lesser number of parameters is much lower than what it

would need for encoding for a deeper number of network.

So, if we have a deeper network since you have more number of parameters over there.

So, the effective space of features and then they have representations which you are

learning is much higher and then that way the total saturation accuracy increases. So, you

would need longer and longer to train over for a deeper network, but then the final

performance always is something which is to be amazed and it is it is remarkable.

(Refer Slide Time: 16:42)

So, let us have a look into what happens on with the loss function.

(Refer Slide Time: 16:49)

So, the loss function as such is still decreasing, it is it has just operate down to epochs

and it is just the start of it. So, in general I would suggest that keep on operating it over

for at least 1000 epochs that might take time. And for the given the kind of a high power

GPU which we have it already took us more than a minute ah. So, if you running it on

CPU, then you have to sort a bear with it and keep on running for longer duration of

time.

(Refer Slide Time: 17:13)

So, thought the accuracy has not changed as much over there and that is for a marginal

change which has happened. Then let us look into what happens down with the weights

over there.

So, what I have done over here is quite similar to as in the earlier case that after my

training I just copy down my weights and then try to visualize out my weights over here.

(Refer Slide Time: 17:25)

So, when I go down to my weights these are my first convolution layer. So, my first

convolution layer basically has 1, 2, 3, 4, 5, 6, 7, 8 that is 64 number of kernels over

there which are arranged in a stack of 8 rows and 8 number of columns for row over

there. And each of these is an 11 cross 11 matrix so, let us count it out 1, 2, 3, 4, 5, 6, 7,

8, 9, 10, 11 and on this side you have 11. So, it is a 11 cross 11 and maps down a 3

channel input onto these weights and that is why you have a colors thing coming down

over there.

To going on the same logic this is what was the initialization the random initialization of

a network which I had and this are the weights which comes down after my train. Now

that there you do not see any features as such coming down and to be very very frank on

that there has not been any possible large amount of learning which has happened over

there. Is just been from my random to what is after 2 epochs over there.

(Refer Slide Time: 18:21)

So, if I look down into my difference you do see that some other weight are changing

because there is a significant amount of differences in the weights which are coming

down over there. And this is an indicator that the learning is happening and then you are

not hitting down on a valley region or a certain out point. Through your accuracy gives

an indicator as effects just start down at 10 percent, but then the change which is

happening over it is much lower.

(Refer Slide Time: 18:41)

So, this was about the first layer which you had, then you have the second layer. In the

second what you do connect down as that you take down this 64 channel input over there

and connected down to 128 channels and then this 64. So, if we take any one of these

kernels of the second convolutional layer so, it has 64 such cud 2D matrixes, which

constitutes the whole kernel over there.

So, my second convolution kernel which is a 5 cross 5 in special spread has the z axis or

the total number of channels over there which is equal to 64. So, what I do is I pull up

one of these kernels and display all of these 64 such 5 cross 5 matrixes over there.

So, this is what constitutes for one of them this if you can look over here it is 1, 2, 3, 4, 5,

1, 2, 3, 4, 5 that is the 5 cross 5 matrix and there are 1, 2, 3, 4, 5, 6, 7, 8 of them and

arranged 8 of those rows as well. So, that makes it a whole collection of 64 kernels

coming down over there. Now, these are the kernels weights which were before the

training, this is what happens after this training procedure of 2 epochs.

(Refer Slide Time: 19:42)

And if you look down and the updates which comes down over here.

(Refer Slide Time: 19:48)

You see that there has been some change, even in the second place though some of them

have not changed at all. If you look down over here this is practically 0 these are the ones

which have ideally like all the weights have made that might of a positive change. This is

where all the weights have made significant amount of negative change as well as and

some of them are randomly changing, some of them have directional changes as you see

over here some of them are like this. So, this is just to give you an indication of how

these changes are happening and that the whole network is training down over there as

well.

So, this was one of the first kind of a deep convolutional neural network for a practical

application using lager size images. So, then subsequent ones which we do will now be

looking into those largest size images of 224 cross 224 and then how to work around

with them and to give you word of advice over there.

So, if you have access to a higher performance computing over there or cloud axis in

some sort and please try to use it, please try to use a GPU if you have some resource

available. Or if you are trying to running on your laptop or standard desktop CPU’s, then

please bear on and I have give it some time thought it will not be blasting of your

memory, but it would just be taking a that bit longer to work it out then.

And that is what you have to do given the number of calculations and the number of

parameters you are training. So, with that keep on stay tuned and stay excited as we go

on to the next version of even deeper networks.

