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Welcome.  So,  today  we  are  going  to  get  you  introduced  to  work  Convolutional

Autoencoder and, as you have done in the early lectures on just connecting now fully

connected auto encoder where, you had a bunch of neuron on which, you had your input

image as in a batch or may be the whole image which goes through it..

And then it connect down via all of this hidden layers and, the end terminal over there

was going to reconstruct your original image and your cost functions were defined in a

way,  which  is  trying  to  minimize  the  mean  square  error  between  whatever  is

reconstructed and what was focus given down on the input side of it.  And the whole

purpose of this auto encoder was to lean representations, which can encode them image

in it is own, (Refer Time: 00:53) best possible way..

And that  would  have  resulted  in  nature  of  features  and a  set  of  features  which  are

hierarchically  connected  across  the  depth  of  the  network  which  can  be  used  for

classification purposes and this definitely give you edge over all the other methods in

which you can use an unsupervised training mechanism, in order to actually learn down

features and, then all of the features which are learn down in an unsupervised manner

can  be  used  for  initializing  a  fully  connected  network,  in  order  to  do  your  image

classification as an end to end pipeline..



(Refer Slide Time: 01:30)

Now while we had done all of these ones in the first month and, then subsequently we

went over to understanding convolutional networks. So, in convolutional networks one

thing which we were doing is you needed a large corpus of a data,  which is already

annotated such that over here, while you are back propagating your errors caused by

misclassification, your new features are getting leant and this features. Now which are

getting leant are in terms of convolution kernel which appear across the hierarchy.

Now, the question which does face to your mind at that point of time, is can we not have

a mechanism for actually learning these features in an unsupervised manner as well. And,

that would be of a huge application as well as an immense contribution to a field where,

you have less amount of annotated data for classification learning while you can have an

ample amount of an annotated data. So, which is not labeled, but you have just a bunch

of images over there for all the objects which can ever occur. And convolutional auto

encoders are basically an answer to this kind of a mechanism..

So,  where  we  go  down is  what  you  had  seen  in  the  earlier  lecture  was  where  we

introduced  you  to  a  convolutional  auto  encoder,  in  the  form  of  how  convolutional

connections are made down and, then it directly connects down to a fully connected layer

in terms of auto encoder and, then you have the rest part of it which is your decoder

block  and  that  will  be  making  use  of  either  up  sampling  operator,  or  an  unpooling

operator or something even called as deconvolution operator as we had introduced..



So, today I am going to write down one very basic sample code in order to do all of those

parts, we will have a convolutional part of the encoder, we will have a fully connected

part of the encoder, then similarly goes down as a fully connected part of the decoder and

convolutional part of the decoder. So, without much wait  let  us get into what this is

doing.

(Refer Slide Time: 03:19)

So, as in with all of our earlier parts we just end up loading down necessary libraries

which come down over here. So, let us do a simple run over this libraries; so, once your

libraries are loaded, then you have your data which is coming down..



(Refer Slide Time: 03:32)

Now, for the data which we are using I chose to use down just CIFAR over here the 10

class classification problem data which we have used in the earlier lecturer while trying

to do it with LeNet as well. So, there we had modified LeNet in order to take in color

images and all the color images which were there were from CIFAR.

And so, quite contrary here what we are going to use is although all of this data does

have its training labor in terms of classification associated with it, but we are not going to

make use of that, we are just going to make use of the image data itself. So, it the labels

over here as such are of no use ; it is just the image which is going to be used over here.

Now, for batch sizes we use a batch size of larger size over here, it is 2000 images which

goes into one single batch. .



(Refer Slide Time: 04:22)

So, let us just get this part running and once that does we check in as usual for our GPU

availability. So, my GPU is available and that is great.

(Refer Slide Time: 04:30)

So, now I am I am done with my initial part of it in terms of just taking down my data

and  getting  my  stuff  initialized.  Now,  the  next  part  is  I  will  have  to  define  my

convolutional autoencoder architecture over here, if you go through this model over here,

what it tries to do is I have 4 different blocks, in which the whole thing is divided; one is



called as a convolutional encoder, the next part is a fully connected part of the encoder

which succeeds the convolutional operations within an encoding.

(Refer Slide Time: 05:00).

Following  that  I  have  a  fully  connected  part  of  the  decoder  and,  then  I  have  a

convolutional  part  of the decoder  as  well.  So,  let  us  go down how it  is  define  now

convolutional part of the encoder, it is basically the first part is 2 d convolution, now

what it takes in is 3 channel input because, you have your rgb image which is coming

down on the input side over there. And then it maps down to 64 output channels..

So, the total number of conversation which you will be having in this first layer is 64,

that is a total number of unique channels which inspired to maps down, to . Each of the

kernels  which  we  used  as  a  3  cross  3  kernel  not  5  cross  5  any  of  them,  we  do  a

convolutional which is a stride convolutional so; that means, that necessarily the size of

the result over here is going to be smaller than the size of what you had, if you are just

doing with a normal side of 1 ok. So, this is something similar to as whatever size you

would have achieved, if you had a stride of 1 convolutional succeeded by another max

pooling with 2 cross 2 and stride of 2. So, we just merge all of them together though

functionally, it is different as we had learnt in the earlier lecture as well. So, functionally

that are going to be certain differences coming down, but this is just a faster way of

computing it out and reducing the total number of compute layers over there. .



And finally, there is a padding available. So, let us just and the padding over here is just

the padding of 1 which is present. So, that is like the 0 padding and the periphery over

there in order to match it down. Now, all of this is done from the perspective of your

calculation which says that your output with is equal to input, with input with minus the

size of the kernel plus twice the padding which were giving divided by the stride which

comes down plus 1 ok. .

So, if you are input over here is 32 cross 32, then what comes down is that your 32 cross

32 minus my kernels size which is 3, plus my pending which is a plus twice of my

padding which makes it 2. So, it is becomes 30 32 minus 3 plus 2 over there. So, it

becomes 32 minus so, so it becomes 32 minus 3 which makes it 29 and, then I do a plus

1 over there which makes it 28 and that whole thing divided down by my stride of 2..

So, that brings it down into 14 cross 14 sized over there. Now, following that I have a

leaky ReLu non-linear transfer function given down over there. So, I could have used on

a standard ReLu, but; however, what you wanted to do was on the negative side of it if

you are values are coming down negative, then we still try to preserve some sort of a

gradient and not just make down the gradient and repose everything over there 0.

So, that would technically for any error which is negative fits it is just not going back

propagate any part of that error over there. So, leaky ReLu helps me to do that with the

leak factor of 0.1 maps down. Now, these are personal choices and nothing beyond that

the more experience you get, you chose it out, but as of now it just (Refer Time: 08:05)

chosen out value. The next layer over there is a gain of convolution layer which maps

down from 64 channels on 228 channels. So, there are 128 unit kernels and then you

have your kernel size of 3, 3 cross 3 the same way and then a padding or stride of 2 and

padding of 1 and it keeps on going down and the final part is where from 128 channels,

you again connect down to 128 channels.

Now, over here by the time you actually least term this linear part over there, what you

have  is  128  channels  are  what  corresponds  over  there,  this  through  this  whole

transformation over there, you end up getting a smaller matrix of size of 4 cross 4. So,

the  total  number  of  neurons  which  are  present  within  the  full  volume over  there  is

basically  128 into 4 into  4.  And that  is  the  total  number  of  neurons which  will  get



connected  and  the  linear  fashion  fully  connected  fashion  200  to  1024  neurons  and

following that you again have a transfer function which is a leaky ReLu.

Now, this complete your part of the auto encoders. So, the like hidden layer which is

shared between the encoder and decoder units over there, has just 120 has 1024 neurons

present over there, now these 1024 neurons and now been passed on to my decoder unit.

So, what I do on the first part is 1024 neurons they will just blow up to the total number

of neutrons which is equal 128 into 4 into 4 which is the same as over here. So, this kind

of an encoder decoder is symmetrical as it appears over there. Now, following down my

transfer function over there, then I start converting all of this onto my conversational

block.

Now, since my view or linearization and repacking is not part of my architecture, but

they just operations which I do on the data so, that is something which will be defined in

my forward functional. Now, let us look into the decoder part of it..

(Refer Slide Time: 10:00)

Now in the decoder it is quite symmetric to how it was going down in the encoder part as

well. So, in a encoder you had 128 channel which connect down 128 channels. So, it is a

same thing which comes on except for this output the number of channels is what will

correspond to the input number of channels and, this input number of channels over here,

on the encoder is what will correspond to the output number of channels in the decoder. 



Your kernal sizes are still 3 cross 3 and your stride which you are using is of 1 and a

padding of 1; the whole reason being that over here, when I do a stride of one and a

padding of 1 I am going to retain object of the same size ok. Now, whatever was the size

coming out of here so, here basically it was a 4 cross 4 and that is what comes from over

here as a result as well. Now, that 4 cross 4 size 1 which has 128 channels is what is get

(Refer  Time:  10:47)  out  over  there,  then you do a  leaky ReLu and then you do up

sample.  Now, this  up sampling over  here is  just  interpellation  up sampling which is

taking place.

(Refer Slide Time: 10:56)

Now, this interpellation will convert this 128 into 4 into 4 size thing on to 128 into 8 into

8 sized ok. And that is something which matches the output, which can be fed down to

this particular which is sort of symmetrically fed down to this particular earlier layer..



(Refer Slide Time: 11:17)

And that is what I am going down. So, were here I am going to convert 128 channels on

to 64 channels that matches on my encoder sized the symmetrical value. So, you need to

keep in mind that whatever is the kind of number of channels and the size on the encoder

side is it is just going to revert it in the same way in the decoder side as well. So, finally,

when I get down from my last layer over there, so in the last layer I just have a value

which is equal to 3 channels and this output over here is going to be 32 cross 32 ok.

Now, this is about my definition of the architecture..

(Refer Slide Time: 11:52)



Now when I do a feed forward, but I am going to do is first I am going to just feed

through the auto encoder through the encoder block or the convolutional encoder block

over here, once it comes down from there I need to linearize each of them and that is by

using the view function which is to cast all the neurons into one single linear layer. .

Then from there it feed through the encoder from there, it feeds through the decoder, the

fully connected encoder and decoder. Now, once I am over here is just a bunch of linear

neuron which have to be undone and again converted into my vector space of 128 cross 4

cross 4 and, that is what I am doing over here..

Now, once that is done you can pass down this 128 cross 4 cross 4 size attention on to

your convolutional decoder block over there. And once I come down over here, I see that

my output size is the same as that input which I had provided over here. Now, once this

is done I can define my network and, then if my GPU is available which for me is there

then I can convert it to cuda and (Refer Time: 12:49) and then so, this just for printing

the network..

And since I want to look into what is the kind of weight change which has happened over

here. So, I would just be copied on my weights and keeping it down. So, let us execute

this part and we will see what comes out. So, you have your total auto encoder which is

defined like this.

(Refer Slide Time: 13:08)



So, the first part is your convolutional encoder, which has all convolution connections

and your transfers in term of leaky ReLu, then you have your fully connected part over

there in terms of a sequential part of the encode, then you have your fully connected part

of the decoder and subsequent to that you have your convolutional part of the decoder

present over here and this maps down pretty much symmetrically one to the other one. 

(Refer Slide Time: 13:36)

So, once this network is  defined for me.  So, let  us get onto training down this  auto

encoder. So, what I choose over here is to train it over 5 epoch I have my loss function

which is MSCLoss function because this is not a classification problem I am solving in

any way, I am just trying to solve down regression kind of a problem it is just trying to

encode the image in itself. So, you just use an MSCLoss over there and, I can go in on

the best by the best of the optimizations we have at the current stage that is on Adam. 

So, let us keep this one running because, it might some time to run it while I go through

the codes. Now, over here what I do inside is I set my epoch counter running over here,

which runs over 5 iteration or 5 epochs and within each epoch it is going to load down

my batch of the data, which is 2000 samples as I had set in the earlier case and, from

there  what  I  do  is  basically  look  if  there  is  GPU available  and  since  my model  is

converted on GPU..

So, I need to actually get my data also converted on to my cuda. So, this is where my

inputs get converted over there, now following that what I do is I set my gradients in the



optimizer as 0 and, then I just feed my inputs to the networks such that I get my outputs

ok.

(Refer Slide Time: 14:43)

Now, on my criterion function over here since my loss all or the cost function, which I

was going to use is an MSCLoss function which basically tries to look in to minimizing

the error between whatever is the input and what comes from output side of it. So, for

that reason the argument which goes into my criterion over here, is there is an output

which  come  over  here  and  the  reference  in  the  earlier  case  when  you  are  doing

classification this used to be labels, but for me these are my input values over there..



(Refer Slide Time: 15:15)

Then once my loss is calculated I need to find out nabla of loss, or the gradient of the

loss. So, once that is done then I do my optimizer dots step which is to iterate back

propagate the whole radiant through the network, in order to an error back propagation

and, then I just do a accumulation of the loss as it keeps on going over though number of

batches which goes down. Now, with this what I do is technically take down an average

loss per epoch and, so my back size over there was 2000..

So, what I  am doing going to do as basically  60000 are the total  number of sample

present and each batch taking down 2000 samples over there. So, it ends up being just 30

number of batches which will be present when I am trying to do an update per epoch. So,

just take an average over that and, that is that is the average loss per epoch and, then I

just keep on saving it out do a timer and then finally, it is to plot down what the loss

looks like. .



(Refer Slide Time: 16:12)

So, if you look over here it takes down about roughly 25 seconds to run it down we just

run it 2 iterations over there..

(Refer Slide Time: 16:19)

And this what comes down on the loss side over there. So, it is started with an MSCLoss

somewhere around of a 0.14 when down to a loss of 0.024. So, there was good amount of

one point of decimal loss coming down; however, it has not yet resaturation. So, please

keep on running over a long duration of time, or you can even put down learning rate

update rules over there to come down much more conversion; however, the interesting



part is actually to look down into the visualization and this is what we have been doing

for the last few lectures. .

(Refer Slide Time: 16:44)

So, let us get down so, what I have is a just a simple definition of the function, to get on

my weights and visualize it out. And since initially I had just copied on my weights and

kept it. So, I am going to use my initial weights. So, what I do over here is when the

network is completely define, then I make one effort to copy down all my initializasion

grades, or the initialize weights, which are just random initialized over all the kernels

which are present over there. Now, that helps me in a significant way because, now I am

quite prepared in order to look down what happens after the whole training process is

over.

Now, once a whole training process is over after defining this function what is do is

actually copy down all the weights, which are have been trained. And then my next part

is to actually look into what is the difference of the weights, which is which gives me an

idea of how much each weight over there has been updated within each of the kernels.

Now, having done that the next part is that your weights can exist either on the CPU or

on the GPU, but based on like that you are executing, if you have a GPU available then it

pulls it automatically and goes down on to the GPU in order to do it. .

Now, it would just need a type casting over there because the rest of the functions for

displaying out and then showing out the weights, there have what exist on the CPU and



not on the GPU. And that is the whole purpose of doing this type cast over here and, the

finally, we just use a visualization to in order to see this out ok.

(Refer Slide Time: 18:11)

So.let us look into what it goes..

(Refer Slide Time: 18:15)

So,  my initial  weights  something  which  looks  like  this  ok.  Now, you need  to  keep

something in mind that we had actually created a model. So, if you look into this model

over here and, the first layer which is connecting down any input which comes down into

3 channels into 64 such kernels over there and, then since it is a 3 channel input over



there my convolutional kernel is of the size of 3 cross 3 cross 3 my 3 cross 3 is the

special spared over there and the number of channels is also 3 ok.

So, this is technically as if for 3 cross 3 rgb made fixes what we are going to look down

into and, there will be 64 of them those unique numbers. Now, let us come down into the

visualization. So, if you go over here and then the matrix which is forms has 1 2 3 4 5 6 7

8 number of kernels on this axis. On other side also you will be seeing down that there

are 8 number of rows, which down and that together make it as 64 number of kernels

which are visualized. And each is a 3 cross 3 in special split and has 3 channels that is

why you get your color visualization coming down over here. And that is quit conformal

to since we have the input in terms of a color images itself ok.

Now, these were the weights at the initial part of it and, then once you have train out the

whole process, then you get down your weights which look down quit similar to this one

ok. Now, for most of you it might not even make sense because, it look as if had not

much of a change.

(Refer Slide Time: 19:41)

Now, if you look down into your weight update, then you can pretty much make update

this updates which have happened over here are sort of like which appear more of scalar

in nature, like whatever was the initial randomization that has been just some sort of

(Refer Time: 19:53) shift happening over there. Now, that is not unlikely; however, for

some of them there has been a different wearing nature of the ship which comes down



and on over here you see that there has been a different shift in each of these color planes

ok.

If you keep on running this over a longer period of time as we have done in earlier cases

with adjusting trying to use down convolutional networks of the very basic nature, you

can actually see the trend setting in it consider we just train down for 5 epoch for sake of

time within this video it trains out, but you do not see such a major difference coming

down over  here.  If  you set  the  training  with  learning  update  tools  and  oven longer

number of epoch and maybe something like 100 epoch over there and wait for some

time, there is each for me this is taking down about 25 seconds..

So, for you it might vary based on whether you are using a CPU only or GPU kind of a

mechanism, but it is it is a nonetheless one thing you need to remember is that these

mechanism of using a deep learning network, they do consumes a lot of time for training

and, you will have to just wait and watch nothing more than that, a good method really

excellent one, then the time consumed is also large. .

(Refer Slide Time: 21:00)

So,  this  ends  of  the  first  part  of  it,  which  is  just  with  learning  looking  into  what

representations it has done, but then the objective of actually learning this representations

was so, that I can have a classification network which is very accurately initialized onto

what features makeup the data ok. Now, the next part is to modify this auto encoder part



which has a convolutional part over there, in order to make this into the classification

network..

So, I technically do over here is that I define a newer kind of a model, which is just going

to take down my initial part of the convolutional encoder and, my fully connected part of

the encoder and then what is whatever it is the resultant over there which is 124 just

connect it down on to 10 classes over there, via a linear connection there is a only change

which comes down and due to this change you have your forward function also changed

over here. .

Now, if your GPU is available just convert it to the GPU and, then you can just copy

your weights and keep it for your purpose. Now, we have a model which has already

been trained an initialized to do a good amount of representation leaning.

(Refer Slide Time: 22:00)

 What we are going to do over here is basically yeah, this is what your network looks

like, you have your first part of it which is just convolution, the second part of it is the

sequential and, the third part is what were just now introducing in terms of classification

network ok. Now, we are going to train down this final classifier..



(Refer Slide Time: 22:20)

So, whatever has been optimized earlier with unsupervised mechanism, we are just going

to retain all the weight over there and, then do it this will be trained over 5 iterations. So,

let me just keep it running and then I can do the rest of the discussions..

So,  now, over  here  if  you look so,  my optimizer  still  Adam not  much  of  an  issue;

however, since my task has changed out and it becomes a classification task. So, the

criterion function of the cost I use is a cross entropy loss ok, the rest of it stays as the

same; however, over here for the first time I am going to make use of my labels.

(Refer Slide Time: 22:54)



Earlier I was just going to make use of the image data for learning, but I never use labels

over here, since it a supervises one in order to classify it in 10 classes so, my labels

comes for the first time. So, going down by what we have is you 0 down your gradients

do forward over the network and, then you are going to took take a look into how good is

the classification over there..

And for that you have your output which are generated over there, that is output for 10

neurons and then  you had your  labels  which are given an over here for  comparison

purposes..

(Refer Slide Time: 23:36)

Now. once your loss is computed you find out nabla of the loss on the gradient over that

and, then iterate over the optimizer in each step and that does your back propagation

coming down. You calculate  out  your running losses over all  the number of batches

which  work done over  there  and,  then  you can  actually  use  that  for  the  rest  of  the

purpose..

Now, following that what we also try to do is as we were doing in earlier cases is try to

load down into how good has this network train in order to do a classification process..



(Refer Slide Time: 23:56)

And, for that purpose what we do is we just try to take down data from my testing dataset

which is independent. So, I have not use any of the data in my testing dataset in order to

train the full network, I am just going to take that part of the data and, I am I just iterated

over all the samples on my test data loader, which I  have  defined  in  the  start  of  this

whole  code itself  .  And,  now if  my data  is  available  if  GPU is  available  just  get  it

converted onto your cuda and, then the rest part is quite simple..

So, do a feed forward over the classification network, you get down whatever it is that

predicted index location which has the maximum probability which comes out and then,

you see whether the predicted index is correct in terms of just matching it down whether

it matches down the label for that data or not. And then you normalized it over all the

batches, which are running down and then you can just have a good look on to the whole

thing by doing this 2 plot.



(Refer Slide Time: 24:47)

So, one of them is going to plot down the lost in terms of classification learning, the

other  is  going to  do an independent  accuration  of  the independent  estimation  of  the

accuracy on the test dataset which is available to you. .

(Refer Slide Time: 25:00)

So over here this takes lesser amount of time as you see it takes down about roughly 3

seconds in order to take the whole network and, that is quite common because in the

earlier case it was taking more time since you had the convolutional block which was

there in the encoder, you had a convolutional part of the connection in the decoder and,



you  had  fully  connected  layers  as  well  coming  down.  You  have  you  have  actually

chopped it down significantly and, then we reduced some of the major costly operation

which are in terms of using bilinear interpolation to up sample it out.

Now, if you are just linear interpolation over there on nearest linear interpolation; it is

much easier and less costly operation.  So, these are places where just by introducing

some changes, or by in case you accidentally take a in effective mechanisms you are just

going to increase the total time complexity over there. So, the moment you changed it

out because, the rest of the down sampling is something which happens in much smaller

time, then the amount of time needed to do linear interpolation over there.

Now, from there we look in to it that your loss which was maintain in terms of cross

entropy, it starts somewhere around 1.66 and then it goes down at the end of 5th epoch to

1.04 that has not been much of change to say practically and looking at the end of this

curve.

(Refer Slide Time: 26:13)

Keep it running for 100 epoch it would definitely hit down, the saturation in a much

better accuracy.



(Refer Slide Time: 26:19)

Now, if you look into the accuracy part over there it starts somewhere very low at about

38 point  some percentages  and,  then at  end of  it  goes down quite  high to about  56

percent. Now, not an impressive figure, but definitely the is a factor of about 20 percent

18 percent roughly is an increase which you get down just by training for 5 epochs..

Now, if your initialization in the earlier case say, you had kept your auto encoder training

over  100  epoch  and  whatever  you  had  initialized,  you  use  the  same  thing  for  this

classification over here, you would have started with a much higher accuracy because

your features are much better. So, it is it is it is in the same line as we had leant out with

our standard auto encoders in the fully connected because, in the same kind of concepts

of learning and better initialisation do have a benefit cumulatively transferred over here

as well. 



(Refer Slide Time: 27:07)

Now, once that part is done let us look into the weights which come down, at the end of

this process..

(Refer Slide Time: 27:15)

So, these were the weights which come down after the end of this whole training process

over there ok..
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Now, if I look down over here so, you would be able to see down your weight updates

which come down, now you can see pretty much these weights update are where you see

a change in color coming down. And this was happening because one phase of it was just

trying to represent the data itself, but the next phase is to get down more and more better

kernels which are better for classification. So, some of these kernel which were redone

then (Refer Time: 27:43) says that whatever be the class of the objective should always

be firing up in the same way they are the ones which get modified to the maximum

extender in to increase your accuracy over there.

So, just these are for your own understanding and then how you would be getting it done

over all the other source of data coming down for your work..
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Then next part is what we strive to look into the performance of classification of each of

these class.

(Refer Slide Time: 28:10)

So, now, there were 10 classes which range cross plane car bird cat and then this is the

average kind of a performance which goes down, you see that frogs get classified in the

best possible accuracy ah, deer has the worst accuracy coming down over here, cat has a

bit (Refer Time: 28:26) better than the deer, but most likely it might be confusing all cats



with deers and, that is pretty much because it is a small size image over there of size 32

cross 32.

Now, this is just to give you the connections and how we are going to make use of even

unsupervised  learning,  as  in  auto  encoders  within  trying  to  get  on  a  convolutional

network as well.  So, in the next classes when we get into more deeper convolutional

practical  networks  like  VGG nets  and others,  you  can  still  use  this  kind  of  similar

convolutional encoder decoder network in order to initially train them though they are

typically  not  trained  in  that  way  given  the  computers  complexity.  So,  just  keep  on

waiting for the next lecturers and till then goodbye.


