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Modifying a LeNet for CIFAR

So, welcome this is the next lecture, where we are going to show you how to use a LeNet

for your color images. And the difference where it comes down from standard LeNet as

in for MNIST classification is that over there they were all grayscale images of 32 cross

32 and we were processing out. Now we are going to use another new data set which is

called a CIFAR and on over here though your spatial span of the images are still rates it

into 32 cross 32, but they are all color images. So, your input is no more one single

channel, but it is 3 channels of input which comes down to you.

(Refer Slide Time: 00:50)

So, that is where it will have to modify because, your network cannot anymore be just

taking on one single channel, you can put over there and the data complexity and the

total number of tunable parameters will also be changing. So, as we go through it I will

get down more and more into it.
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So, the first part is the same on just trying to write down your header and, your initial

files which have to be called on and, then the next part is substantively to get your data

loaded. Now what we do is we try to stick down to a similar kind of a conformal thing,

as we had in our MNIST classification problems with LeNet and, that was to take down

just one hundred images on my batch and, then subsequently do it. 

So, here also I am trying to stick down to the same batch size of 100 images my training

set is trying to load it down from the inbuilt touch data sets folder which also supports

CIFAR. Now CIFAR is basically natural images available, or now small say there are

cats, dogs animals bicycles kind of thing and there are ten categories and that is why it is

also called as CIFAR 10.

Now, you can just load down the data set using the same train set and the train loader

function over there and, this will just download if it is not already downloaded and then

do it so. This is quite similar to using any of the standard data sets as we had been using

for MNIST as well in the earlier examples. So, let us load this fight. So, so it just sees

that files are already present and, then they are verified and it is ok. So, my 2 trainers are

created over here.
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Now, the next  part  over here is  to  get down and actually  print  down the number of

samples. So, let us print it  out and quite on the on the different site is that while on

MNIST you had 60000 examples for your training here, we have fifty thousand examples

for training and, then 10000 examples form the testing over here. So, it is that is the only

difference which comes down, but other than that the next difference is; obviously, they

are not grayscale images and these are color images and, that will make a modification to

my network definition.
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So, let us get into the network definition over here ok. So, here what I do is I try to get

down  a  convolution,  which  takes  in  3  channels  on  my  input  and,  then  generate  6

channels on my output. So, you remember the first layer of a LeNet and what it was

doing is that my whatever was my input it will do if 5 cross 5 convolution over there.

And, then generate that many number of outputs which is equal to the number of unique

convolution kernels; however, over here what I have is that I have a 3 channel input over

here.

It is no more single channel or a gray scale image which goes into it. So, it is a color

image which comes in. So, from there I am mapping it down to 6 via 6 such convolution

colors and each of this convolution kernel has a spatial spread of 5 comma 5 or 5 cross 5,

and that is what is written over here we are not any more explicitly specifying what is the

kernel size and what is the batch, but because the first argument which goes into Conv 2

d operator is actually the kernel size over there ok. So, this slide over here still says as

one comma one and then there are no plannings which are introduced over there.

The next part is to do a max pooling and the max pooling, over here is to do a 2 d max

pooling with 2 cross 2 kernel and with the stride of 2. So, this goes down the same way

as we had in the earlier case. Now once this part is done the next part is actually to go

down and get a look get. The next convolution being defined over there so, for the next

convolution which we define over here, it is it is what maps down 6 channels 1 to 16

channels and with the kernel size of 5 cross 5 ok. Now that is done and an pretty much

set over there. Now the next part is basically to map down all my outputs coming down

over here and, then map it down to 120. Now, where we make a difference over here is

over here taking down that, we are just taking it 1 1 single input coming.
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Now, we know now instead of one single input you have 3 channel inputs coming down

and, the rest of the network pretty much stays the same. Now what I do inside over here

is I define my forward pass and for my forward pass, what I am doing is I have my

convolutional  the  first  convolution  operator  written  down  conv1  and  I  do  relu  or

basically a non-linear transfer function over there and, then a pooling operator.

Now see one thing what I have is that since I am going to use the same kind of a pool in

2 instances, it is always a 2 cross 2 max pooling and doing it. So, I am no more defining

it as 2 different pooling layers which are actually the same in their function and, I can

actually do away by calling them one after the other. So, in case there were 2 different

kinds of pooling operator then maybe defined 2 different pooling operators otherwise it

does not because otherwise it does not make sense. 

However, for convolution we had to define 2 different convolutions because, the number

of input channels over there was quite different; in both the cases as well as the number

of output channels are different. In case say the input output mapping and the kernel size

everything is same you can just define it once as 1 module and, then within the forward

pass you can keep on re recursively calling that module as many times as you want. So,

latent down and then more deeper networks and more detailed networks is where we will

get into reusing all of these, but the first kind of reuse which you see over here, for any

kind of functional structure that is the pool layer which comes down.



So, once I have this output coming over here the next part is to actually flatten it out and

get down a linear combination of 400 neurons coming and, that is what is connect down

over here from 400 neurons 1 to 100 and 20 neurons that is that is what I do over here as

my forward pass through fc 1 and, then doing a non-linear transformation as a relu. 

The next one is to do a forward pass over fc 3 and then relu and, then the next one is to

do a forward pass over fc 3 and that gives me 10 outputs over here and so, this is a

classification network as in the earlier case we had a log softmax written no we write

down the same blocks of max over here. So, this is about defining the network let us run

it and then I have my network to be defined.
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So, that is what is defined as net at this point of time I have my network define and all

the weights initialized and available to me for the usage. So, this is quite straightforward

we did see that what I have is basically convolution which goes down over here, then a

max pooling operator on the 2 d side of it and then again in a convolution and, then my

linear combinations coming down.

And then this is a very straightforward way of looking down into whatever I wanted to

define in terms of writing down just single arguments coming into, it is what has actually

been defined on the system over there and, then there is nothing wrong and this pool

operator over here is what is being reused. So, the output which comes over here again

goes through pool and, then that output is what is fed down over here and you could



pretty much do these sort of reuse of each of the models because, your forward function

is how the data mapping is mapped on it is it is not in the order of exactly how these

things come, you can have them quite juggled up and down as well, but then the only

thing which defines how the data flows is just this forward function which is where it is

written.

So, this was to give you a first hint for the first time, that it is it is not necessary that all

your structures will have to be written down in the same order, it is just for convenience

and for easy to debug, when you are trying to look into it at all the structures as they

would come down they written in the same order as how the network gets built up, but

then that is not a necessity from the perspective of handling the data the only necessity is

that  your  forward  function  is  properly  defined  which  can  take  in  the  data  in  that

particular format.
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And then what I do is once my network is defined, I try to just copy down my weights

and keep them for my further use. So, this is in line with what we had done in the earlier

lecture, where I was trying to show you that at the end of training how many of these bits

have actually changed and what is the kind of a change which happens over there, next I

check down for my availability of a GPU and yes my GPU is available. So, it is a great

news and then I can get started with defining it. 
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So, since it is a classification function, which I am using over here classification problem

which I am using so, my cross function or the criterion, over here is still stays as negative

log likelihood without much of an issue, the optimizer as in from our earlier expenses

experiences coming down, we stick down to using and Adam for an adaptive momentum

optimizer over here. So, that is what is defined and then let us get into my training part

over there.
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Now, the trainer does not have much of a difference coming, in we just train it over ten

iterations or 10 epochs over there, within each epoch what I am doing is I just load my

data and, then if it is on the GPU then I just convert it onto my GPU.

(Refer Slide Time: 09:38)

And, then just zero down on the gradients for the optimizer do a feed forward over the

network and get down my output. So, whatever is this a batch size of the data which is

over here. So, my outputs are also of the same batch size, and then I find out what my

loss is or what is the number of errors wrong things, which it has made done while

getting classified through this network and, then do what nabla of loss, or the gradient of

the loss coming down over here and finally, get down to my optimizer and step on the

optimizer over there.
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Finally the point is to go down as running loss and to get down what is the total loss

which comes down over here and, then from there come down to what is the average loss

during trade and, then just keep on adding it down over the epochs ok. Now that is great

and good part the next part is actually over within an epoch to actually look down into

what is the way of how this whole thing is performed.

So, in the earlier case we just had evaluated our errors or the losses using our training

data it, but here the point is independently over my test dataset, which has ten thousand

examples  how does it  behave.  So, here what  I  am trying to do is  in  case the GPUs

available, then just convert all of my inputs into a variable which is cuda type casted

available on the GPU, then do a feed forward over the network and then find out my

predicted. 

And over here whichever neuron is supposed to have the highest prediction value, or the

highest probabilities what it will throw out, then I just find out which index over there, or

that is the class which is at the highest probability of being predicted and, then from here

what  I  do is  just  convert  it  onto a CPU number and that  is  because,  the rest  of the

computations are what run on the CPU are not on the GPU. So, in case I am just I do not

have an access to a GPU.
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So, this part will not be running and then I just run on this part, then it is its not an issue

because my predicted is what is already available on the CPU and then I find out my

total number of carats. And if whatever is predicted matches down the exact class level

of what was present in my testing meter, then it is perfect it is correctly predicted. So,

what I do is I have down my scores given down over 10000 examples. So, that is the

total number of things which have to be classified. So, my average correct value or the

accuracy  is  basically  divided  by  10000  on  my  test  data.  And  then  I  just  keep  on

appending my test accuracies across all the epochs which have come down over here.
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So, from there going on to how to actually start plotting this loss functions over here so,

the first part is actually to look down and, then try to plot down the loss that the plot of

all the losses, which comes from this next part is actually to get down what is the total

accuracy and, then plot down the accuracy is coming up as well. So, once that is done we

just look into this part which is to look down for iteration as it keeps on printing and,

then finally, just prints out what is the final total amount of time taken down for this to

happen. 
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So, let us get this one running. Now once you would once you invoke it out and, then the

training has started down you say see that it takes down about roughly 4 seconds to work

done per epoch. And then it starts with an initial accuracy of 28 percent. 

So, that is not something which is quite convincing to most of you because in the earlier

example you saw that it itself started down with an initial accuracy of about 88 percent

that was, but then you need to remember one thing in mind that that problem was rather a

simpler  problem because,  you just  had grayscale  images,  where the background was

pretty much black and the foreground in which something is written down is just,  in

higher intensities or like full value of 1, if you are looking on in the floating 1 number

system.

So, 0 and 1 and there is a very high amount of contrast between things and, it is just

based on different strokes in my writing pattern that it is easy to discriminate, whereas



here these are small natural images. So, there are cats, dogs apples cars bikes each of

small sized thumbnails of size of 32 cross 32.

Now, given this point that say if you have a bus which is in the size of 32 cross 32 pixels

versus, if you have a small minivan versus if you have a some sort of a truck, given

down in small thumbnail sized images it is really even for humans it is a hard problem to

understand. So, here it is also facing the same kind of a problem most likely like it is its

just  confusing  around  with  these  similar  looking  objects  which  are  getting  bound

together. So, that is one of the reasons why you would not initially get to see that high

accuracy coming down.

(Refer Slide Time: 14:00)

However; one major point is that and the end of the training.
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When it took down 37 seconds you can still see that there is a monotonic decrease in the

lost curve as well as a monotonic increase in the accuracy is coming down over here.
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And that makes us to one of these points that, if we keep on trading it down for a larger

number of epochs so, say put it down to train down for hundred epochs you would pretty

easily see that this goes down much above the 80 percent benchmark.

Now, one more thing you need to keep in mind is also played on with the learning rates

over there. So, change the learning rate iteratively as we had discussed in the earlier



classes of how to come down to convergences. So, after every say 10 epochs you just

reduce the learning rate by half of it and, then to let it keep on going down over there

and, you would see that there will be a monotonic decrease and eventually it will come

down to it is most saturation point over there.
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So, once that is done the next part is to actually look into my weights of what it was

before  my  training  and  after  my  training.  So,  we  make  use  of  a  similar  kind  of  a

argument and objective as we had in the earlier case, the only difference over here which

would  come  down  is  in  the  earlier  case,  your  first  layer  of  weights  was  what  is

connecting a grayscale onto my number of channels and the number of it is over there is

equal to the total number of channels which comes down over here.
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Now, here I have an rgb image 3 channel image coming down because, my total number

of say planes on my convolution kernel is also equal to the total number of planes in my

input image of the total number of channels over there and, that is why you would be

seeing down that in your first convolution kernel in the earlier case while, you were just

in grayscale bits here you are going to see.
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Now, in color weights because each, there is a weight associated with the red channel,

with the green channel,  blue channel and this  is a composite of each of them which



comes up, there are 6 colonels in the first convolution layer. So, these correspond to the 6

colors each of a size of 5 cross 5 1 2 3 4 5, 1 2 3 4 5. So, it is a 5 cross 5 which comes

down over here.
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The next part is this is the weight basically these are all the weights which are there

before the training and these are the weights which the kernel takes in after the training.

And it looks more of like a chess board, or a very decorated piece of chess board and,

then nothing much to convey down you do not see gradients, or anything coming down,

but then you also need to keep in mind that the network as such has not come down to a

great performance it is not even barely 50 percent on the accuracy side of it.

However, it is being much better than a random chance because, if you had to classify

down ten different classes, then the random chance is one tenth or point one sorry sorry

ten percent  is  the  random chance and that  would come down to an accuracy of 0.1

actually. So, instead of that this standing at 0.45, or more than that is actually a much

better performance than just a random guess.
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So, anyways these weights are not yet trained, though if you look into the difference you

would feel that there are gradients which are changing now. So, there are changes in the

gradients in the green channel, there are changes ingredients in and then blue. So, which

is basically one of the other channels other than green which is present, now here do you

see that there is some sort of a change in the brown shade. So, it means that there has

been changes in red, green and blue all of them taken down and most predominately it is

basically a green and red where the change is coming down.

So, these look like shades of purple which is where the differences are in the plains of

blue and red, this is where it is more of like a mix of green and blue, where the changes

are coming down and again you have your brown. So, I am going back to your basic

knowledge  of  colors  within  digital  image  processing,  you  can  pretty  much  make

impression of where which channels are getting changed over there and, you see the

changes coming down in color because your images and objects on the side of in color.
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However; when I am trying to look into my second layer over there so, I am just taking

down my first kernel of convolution and then try to look into all the 6 channels over

there. So, I see each of my 6 channels which are which connect down my output of the

first convolution layers and look over there. So, each is a 5 cross 5 in the same logic and

this is just my first convolution kernel on the second one, if I look between the weights

of what is when it is not train versus, when it is end there a minor amount of changes

which I would see and; however, on the difference I do see that there are gradients which

are sitting down over here.
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So, this is what comes down as we keep on moving towards color images. So, now that

is as in with auto encoders, when I was explaining you for grayscale images to color

images and there was one very immense important point which was made down is that,

there is technically at this point of time no solution given down or there is no definite

answer of when it will converge what kind of an architecture would come down as the

best one, that is that is a still a challenge to be solved out over here.

And so, you see that in over here as well, it is the same kind of an architecture with the

similar number of weights and everything which goes down the kind of performance it

has on grayscale images were. So, the kind of performance it has one color images this is

drastically different and one of the reasons is on your grayscale images of MNIST you

had a much conformal way of representing the data, it was much easier to learn on very

definitive patterns and that is why it was able to classify them in a much better way

whereas, if you go down to your color images, then the way in which it would be learnt

be able to learn down some discriminative patterns, which are of really importance and

would make down, since is much low and for that reason it takes it longer and longer to

learn it out.

So, if you keep on running this code over a larger number of iterations say just change

down; go up over here and, where I have my number of iterations. If you just make and

change this to hundred or maybe 1000, you would be seeing that this comes down to a

much conformal way of decent amount of accuracy and a much lower loss. So, that is

where we come to an end with writing non very plain and simple convolutional neural

networks. So, stay tuned for the next ones where we start digging into deeper neural

networks and, why they are called as deeper neural networks and more computational

complexity issues around with them. So, till then.

Thanks and stay tuned.


