
Deep Learning for Visual Computing
Prof. Debdoot Sheet

Department of Electrical Engineering
Indian Institute of Technology, Kharagpur

Lecture - 03
Feature Extraction with Python

So welcome. And while in the last two lectures you have been introduced to various

aspects of what is this course about, and just a brief overview and visual computing from

the classical way. So, now what we are going to do is while you have learned down about

the classical techniques of how to extract out features and then use those features in order

to classify. So, the first part is basically getting down your first bits of the code study in

order to extract out features.

So, what we will do today is actually a lab session, it is a hands on mechanism and I

would go through down the process of how to set up your whole system a pc on your

own side, which you can use for doing these basic exercises. And since our codes are

going to run down on python and that is the predominant modality on which we work

and for deep learning purposes we will be making use of PyTorch, which is a very

specific deep learning library within python, so without much of a delay let us get

started.

(Refer Slide Time: 01:17)

So, we have put down everything onto 1 GitHub page, which helps you get down 1

single consolidated window into all of your tutorials which will be conducted over here.

So, if you look over here. So, the address for this 1 is on GitHub, so it is GitHub point

com slash iitcliff slash dlvcnptel, so it is just as mentioned over here. So, once you go

down over here the simplest stuff which you can on anyways do is basically clone or

download this 1, so give you a basic reminder a please ensure that you are using a Linux

based system in order to do that because, like we are going to make use of a very specific

library called as PyTorch which I will be showing you subsequently.

So, PyTorch supports only on Linux base place system, so unfortunately you cannot do it

on a windows based system, though I mean you would be seeing that this desktop which

is getting recorded on is a window based system because, we are connected down to

another server system remotely in order to do all of this.

So, I will not be complicating that part of the stuff because, most of you I assume will

not getting access to direct dedicated servers and for none of the exercises which we are

going to do in this learning based curriculum over here, you will not even be needing

access to a full scale server to run down your codes. So, that that does not hesitate and

you can pretty much run it down on your laptops as well, there is no very specific

requirement that your system needs to have access to a GPU and though it does help a lot

for accelerating and doing it faster, even a very bare 1 core I5 based CPU machine with

barely about 8 gigs of ram on board should be enough to do maybe a bit slow, but it will

finish down within say much shorter than the life time.

So, something which might be taking down a couple of seconds with a GPU system, so

in case of without a GPU on a CPU system it might take down a few minutes, but you

will still be able to see the results. So, this is the first foremost point is to go on this

GitHub page and this is where you do.

(Refer Slide Time: 03:24)

So we are going to populate it incrementally with all the lectures coming down 1 by 1 as

of now today you would be seeing that just lecture 2 3 and 5 which is placed over here.

So, what we will be making use of is something called as jupyter notebook and that is

supported on anaconda Python.

(Refer Slide Time: 03:41)

So, the python distribution which we make use of within these tutorials over here and

which you are also suggested to you make use of is the anaconda python distribution.

(Refer Slide Time: 03:52)

Now, remember that there are 2 versions of it python 3.6 and python 2.7. So, for a much

conformal support we would be going down with Python 2.7, which all though to a lot of

you might appear to be an older version, but major of these libraries for computer vision

and visual computing tasks are what exists with python 2.7 on legacy and this is a time

tested 1. So, just first get down your python 2.7 you can download it over here and so I

mean based on whether you are on windows or you are on a Mac or Linux and since

most of you guys would be on Linux.

So, it is advice that you download the Linux version over here, so you can click on these

OSS over here select your Linux and then you get down your installer coming down over

here so and then please check out whether you using a 32 bit system or a 64 bit

instruction set system, most modern systems will be your 64 bit system. So, please

download this 64 bit installer for x 86 systems and so power pcs are a different variant of

processors as well which are available just for few computers and generally for servers.

So most of you will not be having access to a power pc, so that does not need you to

download this 1; so just ensure that you are on the correct version of anaconda which

you are downloading, now once that is downloaded and installed on your system.

(Refer Slide Time: 05:14)

Now, the library which well be using for our coding practices is what is called as

PyTorch, it is quite simple you need to just go on PyTorch dot orque and all of these

links are actually given down on the GitHub page. So, if you are on the GitHub page you

see that there is a dependency list build up over here and there are links given down. So,

this is for your anaconda download this for your PyTorch download.

So, once you click on that PyTorch you will be ending up over here, now in order to get

started there are few simple questions which you need to answer, so 1 is what is your os

you select down Linux, what is your package manager? So, that will be conda because

we are going to use make use of anaconda next is what is your python. So, that is 2.7 for

us and what is your CUDAversion. So, either you can choose 7.5 or 8 or even none, so if

you do not have a GPU over there then just click on none otherwise like for me it was 8.

 So, I am going to choose down 8 over here and then you just need to run this command,

on your come on your terminal for your Linux and then that takes care of the rest of the

installation, in case you get into some amount of problems over here. So, you can always

put it on the discussions forum on PyTorch that can even be related to installations and

they would be the best guys to actually help you out, rather than putting it back to us on

our forum because we went taunt always be equipped to solve all problems of third party

software provider. Similarly for anaconda also if you get down into any kind of a glitch,

so you can just contact out these people or you can just write post it on the blog over

there or on support. So, within the support team they do make sure that they get back to

you.

(Refer Slide Time: 06:52)

Now for CUDA: so the current version is CUDA9, but you need to keep in mind 1 thing

that PyTorch is supported only till CUDA8 and for that reason we will not be use making

use of CUDA9, but well make be making use of CUDA8 actually. So, with CUDAit

should be good enough to install PyTorch and get started, now given that once all of this

is installed over there. So, what you need to do on your terminal is invoke something

called as a jupyter notebook.

(Refer Slide Time: 07:16)

So jupyter notebook is basically a web based UI for your coding environment so and

then once you invoke your jupyter notebook you get this kind of a home screen coming.

(Refer Slide Time: 07:27)

So, based on which whichever folder you are located in, so it is going to show you the

directory listing within that folder, now what I can do is once I have the directory listing.

So, I click on this particular 1, so which is lecture 3 which I want to do. So, once I click

that invokes this particular page coming down over here and this is what is something I

will be getting my initial access to; now if you look under this page there are some

number of these bits and parts of python codes, if you are quite used to python encoding

or if you are new to python coding then it still should not be much measure of a problem,

because I am going to explain you what each of these steps actually mean now.

 So, there would be these codes which go down and that are exactly how we are going to

solve the first part of it and that is our first exercise which we are going to solve. So, you

have already finished off classical methods of feature extraction which included textures

and then majority of them were just texture based features you had wavelets as well. So,

we will be making use of those and here is when I get you to show on them.

So, what we are going to do is let us do a very brief walkthrough of what is there, so if

you look on this let us just zoom like really big. So, this should be a font size which is

enough for you to understand, so the first thing is that what I am doing is you have this

first line which is from torch vision import data set. So, what it technically does is that as

in any of your pager records when major or languages you would be having a set of

dependencies called as libraries. So, here also in python you have your libraries and

these library since it is an object oriented.

So, they are hierarchically packed with in more containers as well, so torch vision is

basically your container within which there is another library container which is called as

data sets and the point is that I do not want to import complete torch vision over there.

So, torch vision this torch thing comes down from the library PyTorch, which we make

use of and there is a separate base for it which is called as torch vision and this is just for

the vision pipe lines over the standard computer vision ways of doing it with torch, now

from there the only thing which I would need for this particular exercise is dataset.

So, instead of loading that complete library and eating up space on my ram, I am just

going to load down the data sets part over there. Then the next part is to include down is

to import python imaging library this is just for reading and writing images and showing

it out in a perfect way. Next is, we will be making use of cycads actually and this is the

cycads image processing toolbox which will be making use of.

So, from there I would just need certain functions which are within the sk image to add

features, now within that the first thing which I would be making use of is get down local

binary pattern. So, this is a python function a dot py file, which I need to input and have

it ready for a lookup within my resources path. So, I am just going to input this particular

file the next 1 is for gray level co-occurrence matrix.

So, that is a glcm which we have already studied and within gray level co-occurrence

matrix, once you have that matrix coming out you cannot use make use of that complete

matrix because, say you have a 8 bit image and you and you went to get down across all

of these bits you will get down some 256 cross 256 sized matrix. So, instead of going

through that 1 we typically would like to compress that and get down certain uniquely

describing features and they are your gray g l c m properties and that is what this

particular function is going to provide you with.

 The other 1 is Gabor filter and since Gabor filters are typically within a filters toolbox.

So, I would just be inputting this Gabor function from sk image dot filters more of what I

do is I import this function called ass pickle and pickle is basically going to help me in

storing my data. So, this is a container so if you are more of used to mat lab, so you

would be storing down your data structures some sort of matrices or arrays, which you

have intermediately computed in terms of our dot mat file; here what if we would be

doing is in terms of a dot pickle file and for that reading writing part of it I would need to

import this particular library. Then I would also need access to my numpy library which

is the numerical programming library for python and this will help me in defining my

arrays the data structure of arrays and everything and in order to avoid writing down.

At every single point numpy dot some function call, I would just be providing a small

acronym for that 1 for numpy and that is called as np. So, every time I just write down np

dot something that will expand it in terms of numpy dot something and also in order to

plot down my figures I would be making use of matplotlib dot pyplot and then that

would help me in doing it out also I define certain macros over here.

So, the first macro which I defined out and that is more of to be consistent with jupyter

environment itself, if you are using some other environment then you might not need to

write down this first, 1 which is just if I am doing a plot then let the plot be an inline plot,

so that it appears on my html itself. So, this is 1 part of the code block which let it get

this 1 running. So, the simple part is just go over there and then you have the run selected

cell. So, we select that 1 and run it. So, while it runs you would be you had seen down

that small asterisks coming.

So, that is when this all the codes within this block are running and it has not yet

completed and once it is completed this is the first time step of the run which has been

done and you get this 1. So, this is just a comment, so if you can choose to run it, but it

does not actually do anything. So, the next part over here if you see what I am doing is I

am creating 2 data sets over here. So, this data set is the CIFAR 10 data set. So, CIFAR is

basically a small images data set which is used for.

So, there are 10 classes of items images which are divided into 10 classes there are small

thumbnails of the 32 plus size and you would be make basically classifying them into

these different kinds of classes over there, now the point is since we are dealing with

visual computing, so we need to take in images itself and these are all color rgb color

images. So, that is available directly within the torch vision data sets. So, now we had

imported torch vision data set over here.

(Refer Slide Time: 14:02)

Now, I can go into data sets and then from there I input the CIFAR 10 data set, now the

point is when it imports locally, so its either imported somewhere earlier and then you

can just fetch it and keep it within your folder called a CIFAR 10. So, this CIFAR 10 is

basically another folder which is created within my local directory.

So, you see your local directory over here where within your jupyter environment. So, if

you go down into this part you would see another folder called as CIFAR 10, so this is

what it needs to create. So, initially when you are downloading this whole thing from

GitHub you do not see that directory anyways because we did not upload the data set,

that is a huge bulky file to be uploaded and we just do not want to upload all of those

because, they are available from a secondary source as well to come down.

So, once first you download this whole thing you will not be getting this folder called as

CIFAR 10, now when you run in this line this is the first time when you will be getting

none your CIFAR 10; now the reason I have this already running and this folder present

is because, I really want to make this faster, so if you have it already downloaded.

Somewhere you can put it within the folder called as a CIFAR 10 and that solves the

purpose otherwise you need to download it from scratch. So, here like what it would do

is it just goes over there and sees that files are already downloaded and they are perfectly.

So, they will just be creating these 2 small data sets for me over there.

(Refer Slide Time: 15:20)

So, I get down on CIFAR 10 and within CIFAR 10 I see these 2, so this part over here

CIFAR 10 python dot tar dot tg said this is my actual file which downloads over there,

from the source and then within CIFAR 10 batches, it will be creating my training and

test batches over here.

(Refer Slide Time: 15:33)

So, now once that is done, so what I can do is I move back on to my main directory over

here and let us go to the next part of it. So, here what I am trying to do is get into the data

set and try to find out what is the length of the data set or how many number of training

samples and how many number of testing samples are present over there. So, it is quite

simple. So, it says basically find out use the Len function which gives you a length of

array within the train data set and within the test data set, so just run that part of it.

 So, these 2 pointers are already over there, so we just find out what is the length over

there and then it just converts it to a string and prints it out over there. So, you know that

your training data as it is of 50000 images and training and testing data set is of 10000

images, now once that is done the next part is we come down over here which is feature

extraction on a single image. So, initially what we will be doing is let us see what these

images look like, so what I am doing is I take down 1 of these images which is at the 0

comma 0 location.

So, this is the first image present on my training data set and then I stored that as a

variable image, now what I am doing is I convert this image to a grayscale map which is

image underscore gray and then I convert this into a numpy array. So, this is whole thing

which stays as a grayscale integer format. So, that will typically be coming down as

some sort of a container with me, now that container I want to convert it to an numpy

and then let is just plot that 1, so if I run that you would be seen that this is sort of an

image which you get done.

(Refer Slide Time: 17:10)

Now it is really fuzzy to understand, but these is basically if you like really go far off and

then try to see into it, so this is the image of a frog; so the first data which we were

looking down was just a frog.

(Refer Slide Time: 17:23)

Now once that part is done, next is we would like to compute out lbp features for local

binary patterns for us, now for local binary patterns what you are going to do is you

would need the main image array. So, that is present over here as a numpy array and this

lbp is over here they will be computing it in terms of a numpy. So, you remember that we

had already imported from sk image features this particular file called as local

underscore binary underscore pattern for computing lbp. So, the arguments which go into

this is the image array which is a grayscale 1, then this number over here is basically the

number of points you would be taking around the central point.

So, you remember clearly from our earlier discussions on from in the last class on lbp,

where you take 1 single point and then if you are looking into it is 3 cross 3

neighborhood you would be getting 8 such neighbors along that point which are at a

distance separation of 1 pixel and then what extra is added over here is what is the kind

of a sampling you would do.

Now what it allows within these functions is that you can choose down any number of

neighbors you can choose 4 5 6 7 typically for the 3 cross 3 that that would not be a

uniform pixel kind of a distribution, but you can interpolate and go down to those kind of

forms. So, what we choose to do is we take a circular neighborhood with a uniform

sampling over there and that is what these arguments go down, you can get down further

more details if you just search out on the help file for this function called as local

underscore binary underscore pattern and that would give you all the details over there,

next the idea is basically once you get down these lbps over there is to Convert this lbp

matrix onto a 8 bit format over there. In order to get down what are the what is the range

of these l bps which come down.

So, once you have this lbp converted over there, the next point let us like see what this

lbp feature on a point to point basis looks like, so we compute this 1 and this is more or

less what is the lbp for that frog image, which we get to see over here.

(Refer Slide Time: 19:29)

It is really hard to actually find out whether there is a frog or something or not from. So,

many points over there which are so distinct these right; now from an lbp what you can

get down is you can compute out the histogram of lbps you can which is a consolidated

feature rather than feeding in this complete matrix of 32 plus size, the next is you can get

down.

So, once you have this histogram computed you can get down the probability pdf over

there from this histogram, then that would help you to get down the energy and entropy

as well now once you have all of these you can basically use energy and entropy as 2

different distinct 1 dimensional features to in order to represent this; because, the main

purpose is that this whole image needs to be represented in terms of 1 single scalar value

and a set of those multiple number of scalar values which will be your features which

describe this image. So, for that what we do is we just evaluate this part over here and I

get down that lbp energy of this much and lbp entropy of this much is what defines all of

this together present in this image.

(Refer Slide Time: 20:35)

Now, once that goes down the next part is to find it out on the co-occurrence matrix. So,

in a co-occurrence matrix what I need to do is I need to get my image over there. The

next point which you need to do is you need to find out, so basically at how many

neighbors would you be looking. So, would you be like taking down only 1 directional of

it or 2 directional of it, the next argument over there is what is the orientation of your

vector whether it is at 0 degrees 45 degree 90 degree.

So, based on whether it is east pointing it is 0 degree, if it is north east pointing it is

45degree, if it is not pointing then it is 90 degree so and so far, this number 256 is

basically the number of gray levels; you have in your gray level co-occurrence matrix to

be computed and this other parts on symmetric and norm are basically to show down

how to handle down the boundary conditions present over there. Now once you have

done down this 1 from your goal gray level co-occurrence matrix what is computed is

another matrix of the size of 256 cross 256, which is present in this a variable called

gCOMat.

Now my point is that I cannot again make use of this 256 cross 256 bit matrix, which

corresponds to just the 32 cross 32 image; but I would try to get down more scalar values

from that 1 the first scalar value is basically to get done contrast, second scalar value is

to get down dissimilarity, third is homogeneity next is energy next is correlation and for

all of these.

We make use of this separate function called as greycoprops, which takes in 1 of the

arguments as a gray level co-occurrence matrix and then whatever property you need to

calculate it out that is another like scalar disk this. So, this is a small label descriptor

which goes into the function. So, that it knows what to compute and give you, so this

help in getting and this are the different measures for that 1 particular image.

(Refer Slide Time: 22:29)

Now, from there the next 1 is to get into wavelets and do it, so, for we choose to do it

with Gabor filters now as you remember from your Gabor filtered equations in the last

class. So, there would be 2 different things which you need to take care of within a

gabber filter and that is like what is the frequency and then what we are typically doing

over here, that is it will rotate and generate out. So, the first part is that you need to have

your image given down over there, as well as what is your frequency at which you would

like to operate.

Now, the other part is what is the angle at which it is located and what are the variables

over there? So there are some things which are auto tuned within the system or you can

also choose to give them. So, you can read down with within the details more over there.

Now given that at any point you will be getting down to components of your wavelet

decomposition 1, is the real value path, another is the imaginary value path. Now from

there we just need to get down the magnitude valued part and so we find out we square

and find out what is the magnitude now once then. So, you can just have a look into this

part of it as well.

(Refer Slide Time: 23:34)

So, you see that this is the real valued part of the gabble filtered output, is the imaginary

part and this is basically the consolidated magnitude response over there. The next part is

from your Gabor or you would we would like to get down some scalar representations

rather than these kind of matrix representation and they are basically your probability

energy entropy and then probabilities used within this energy and entropy. So, you can

calculate that and get done that the Gabor energy is this much and interface this much.

Now this is till now what we have done was just for 1 of these images which was at the

first location within my training data set, now in order to do it for training I would need

to do.

(Refer Slide Time: 24:12)

It for the whole data set and that would mean that, I cannot have any further looking into

1 image at a time. So, I need to run down some sort of a for loop within the length of my

training data set as in over here, in order to calculate this for the complete training data

set because I cannot do it on a 1 to 1 basis. So, what I need to do is define some sort of a

matrix which is called as the training features matrix.

So, this is a 2 d matrix which is the number of rows in this matrix is equal to the length

of the training data set, the number of columns is equal to the length of features. Now

how many features we found out was basically 2 plus 5 plus 2 and that makes it 9

features which we are going to have over here; now for this part what we do is we write

down first for loop which basically ranges over the whole length of the training data set,

once you get over the whole length of the training data set you need to find out 1 feature

at a time. Now once you have 1 feature at a time coming down you need to calculate all

of these features 1 image at a time, coming in you will be needing to calculate all of

these features the first 1 is your lbp features.

(Refer Slide Time: 25:18)

Next is your gray level co-occurrence matrix and Gabor filters.

(Refer Slide Time: 25:21)

Now, once you have all of them you need to concatenate that into 1 row matrix and then

you keep on concatenating 1 below the other and you get your 2 d matrix coming down,

so if we run this part.

(Refer Slide Time: 25:34)

You see this verbose commenting coming down and then it keeps on running; so together

that would finish it off there might be certain warnings at positions and you just need to

escape it out. So, it would take quite some time because it needs to do it over 50000 of

those, but if you look through it; so it is pretty much fast because there is this like the

rate at which it is running down is not.

So, tidy slow as well in the duration of where we are speaking you can already see this

quite going on. So, we just have a verbose command given down over there. So, if you

would like to get rid of this part then the simple task is that you do not keep 1 printing

this part over here which is your print statement.

(Refer Slide Time: 26:26)

So, we will not print this part then it is not going to show down how many of them are

done and then you just need to wait till it is completely gone off; now once that part is

done the next part is basically to find it out on your test set as well. So, I just have to wait

for some more time for this 1 to get over. So, let us just do a basic revision in that case,

so what I did was I have my pre defined precursor coming down over here make sure I

take down to my data set and then I can decide to print on the type of the data set or not.

But say if you are writing a fully fledged code over there, you will not need to get these

parts of the code running down this way just for your explanatory purpose. So, you do

not need to get down as to view 1 data 1 image from your data set then compute each of

these features and then try to see them. So, these are parts which you can completely

comment out and then just start directly from extracting features from all images in your

data set. Now if you do not want to look into what is getting extracted, then you can just

try to comment out this line or even delete this line that is not much of an issue.

So, this is just for printing out your status and you see that this still keeps on running

over here. So, let us see how far it should be quite close to finishing it off because we are

all most at 33000 try invoking another instance of so basically till then when we have

done. So, the next part is that you just need to wait an observed till this part gets over for

some more time, now once your features are extracted the next part of your code is

basically to go and look into what is the later part which is about Just saving out your

feature.

(Refer Slide Time: 28:30)

So, I am just going to show it down on to this offline part, so that we do not just keep on

waiting till that part gets. So, 1 is you have your training data set on which your features

are extracted.

(Refer Slide Time: 28:43)

The next part is to go down on your test data set and also extract out features and

completely show it and then eventually you can go. And basically save down all of those

features in terms of a pickle file as well and then that is what goes down in the end part;

so, now this is over and the next part of it is basically to get down your testing ones

features extracted over the whole dataset.

(Refer Slide Time: 29:11)

And finally is where this part comes into play and that is where you are normalizing out

the features. The whole reason for normalizing out all the features is basically to get

down get each feature, dynamically varying within your training set in the range of 0 to

1. Now what you need to keep in mind is that whatever is the normalization range you

apply within your training set, the same thing has to be applied within your testing set

otherwise the nature of normalizations are going to quite vary.

(Refer Slide Time: 29:40)

Now, once that is completely done the next part is that you would like to save all of your

feature vectors for being used in the subsequent stages. So, we just save down your

training features and training labels as well as test features and test levels in terms of a

pickle file and then just print it all. So, once this part is complete you need to get down

extract features for your training 1 and for your testing set then run the feature

normalization and save it. And this should be good enough to get you started for the next

lecture, which we will be covering down on classification with a very simple neural

network.

Thanks, and stay tuned.

