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Welcome back. So, today we would be starting back on Convolutional Neural Networks.

So,  in  the  last  class  I  had  introduced  you  to  some  of  the  very  basic  operators  on

convolutions.  And  the  some of  the  basic  structural  building  blocks  for  how a  CNN

works. Today we would be building up on top of what we had done in the last class and

get you introduced into one of the early versions of convolutional neural network, which

was referred to as a LeNet it is still it referred to as a LeNet and attributed to Yann Lecun

who had invented this particular 1 and we have already solved a few examples in our

autoencoder tutorials, using the animist digits classification problem.

So,  LeNet  was  technically  a  thing  which  was  invented  more  off  from  the  MNIST

perspective  and,  it  was  for  the  standard  NIST database  which  had  the  challenge  of

identifying 26 alphabets in the English alphabet corpus in the upper case lower case,

making it 52 such things to be identified and on top of it 10 different numbers and that

together makes it 62 classification problem which was being solved out, then that was

not a [laughter] small problem as such, but the shorter version of that and the simpler and

sweeter version is what is done with the digits identification. Since each digit is quite

uniquely available and has a major implication in a very practical sphere of life and that

is on postal code identification.

So, without much of delay let us get started into what we are doing. So, today we would

be working on convolutional neural network and, an taking down this example of LeNet

over there, I would be revising a few of basic concepts which we had covered down and

also coming down to a bit of numerical solution.



(Refer Slide Time: 02:03)

So, that it makes it easier for you to understand and grasp the concepts as well. So, this is

organized as we will just be revising the building blocks, some of these building blocks

which are important  in the perspective of understanding LeNet and, then I would be

showing  them,  what  is  the  standard  LeNet  architecture,  for  handwritten  digit

classification.

(Refer Slide Time: 02:28)

So, let us get into it. So, if you remember convolution how it went down was that if you

have an image, which has a width of M and a height of N and 3 channels, then you have



a 3 cross M cross and, if this is a grayscale image then it becomes 1 cross M cross N ok.

Now the point was that we can define 1 kernel, which will have 3 different planes or 3

different channels of the kernel as well. So, this can be a 3 cross 3 kernel or a small M

cross small N kernel and, and the number of channels over here since we are doing 2

deconvolution so, that will match down to the number of channels in the image space as

well.

So, this becomes 1 kernel, now as I convolve with this kernel of 3 cross w cross h, then I

am going to get down 1 matrix over here. Now similarly I can have another kernel and

then as I convolve with this 1 I get down another matrix coming down over here. And

this output matrix over here will have dimensionally t equal to so, the first dimension

which is by number of channels which comes down by default definition that is equal to

2, or the number of kernels present over there, and the width over there is M minus w

plus 1 and height or the number of rows is N minus h plus 1. So, this goes down pretty

much by your standard definition of convolution.

(Refer Slide Time: 03:46)

So, now when we were trying to do a convolution with the stride and padding which is a

very practical case of working it out, the idea was that if you have some image over there

and your, if you are trying to do down your convolution by just moving it out, then the

major problem which comes down is at the borders you will not be able to operate.



So, the size keeps on decreasing from the periphery of the image itself, if we even if you

are taking it with a stride of 1 in order to get rid of that what we had done was that our

idea was let us padded down with 0s, which is equal to this extra number of points which

just get outside. in case we want to have a full sized convolution result also coming

down.  So,  if  I  have  a  pad height  of  ph and a  pad width of  p  w and,  then  we start

convolving this one with a stride of S and appropriately it keeps on merging and then

come down.

So, as it happens together. So, this is how a resultant matrix is formed over there and,

then your output has a width of o w which is equal to M minus w plus 2 p w divided by S

w where S w is the stride along the width, w is the width of the convolution kernel p w is

the pad applied along the dimension of width. So, each side you will be having p w and p

w number of 0s padded down. So, that makes it 2 p w and M is the original size of the

image before padding. 

So, after padding the size of the image becomes M plus 2 p w basically. So, when and

similarly for your height you have this sort of a relationship as well coming down. So,

that is that is how your final modified thing comes into it. Now, the point is let us get into

a practical demonstration of how it works down.

(Refer Slide Time: 05:34)

So, I am using this example from well known course material from Stanford and, I chose

to instead of redrawing the whole thing, I just chose to actually show it to you using just



this animation over here, keeping in mind that this is one of the best animations to ever

be able to understand it.

So, let us get into how it works out. So, you see this gray over here and these grayes are

all the 0 padded 1s and this once in the blue, this is the 1 which is a size of the original

image itself. So, this is a matrix part of the original image. Now my point is that I want

the 3 cross 3 convolution kernel to convolved around this image. So, this side if you look

into it  this  is  my input image side over  there ok.  So, these guys write  it  down in a

convention of 7 cross 7 cross 3, where 3 is the number of channels. So, this is my first

channel, this is my second channel and, this is my third channel.

(Refer Slide Time: 06:25)

So, as in with the RGB image you have 3 channels. So, here I get the same thing coming

down  as  well  now, that  I  have  these  ones  the  next  point  is  that  I  need  to  have  a

convolution kernel over here and, they also take down 2 different kernels 1 of them is w

0 the other 1 is w 1. Now w 0 has a 3 cross 3 cross 3 form, which means that it has a

spatial span of 3 cross 3 and there are 3 side channels over there. So, the first handle

corresponds to this first channel of the image, the second can of the colonel corresponds

to the second channel and third channel corresponds to the third channel.

So, now if you see down these as some arbitrary weights associated over here, for the

convolution kernel. So, this is on the 1st channel of the 1st convolution kernel. This is on

the  2nd channel  of  the  1st  convolution  kernel,  this  is  on the  3rd channel  of  the 1st



convolution kernel and on top of that you have a bias as well, which is associated with

each of these channels.

So, the first channel will have a bias of it is own the second channel has a bias of bias of

it is own. Now when say it was starting to operate on this one, then yeah yeah it does get

a bit annoying at laughter times that it keeps on moving while I am referring to. So, if

you look into this animation. So, the first channel before of the kernel operates on the

first channel of the image itself ok. The second channel of the kernel operates on the

second channel of the image; the third channel of the kernel operates over here.

Now, accordingly this w 0 S they will give an output of o channel 0. So, when you see

this 1 operating over here the total output is what is coming down on this channel, when

you see this move down and go to this one the output keeps on coming on this channel

over here and, that is how it operates. So, by our definition we had that the weight is

multiplied by this one. So, here when I put down a 3 cross 3 matrix over here with this

one, then I get a 0 into 0 is a 0 again a 0 into 0 is a 0 minus 1 into 0 is a minus 1 that is

the first non ze minus 1 into 0 is again a 0 this, 0 into minus 1 is a 0 this 0 into minus 1 is

a 0.

Now, this 1 times a 0 is 0 0 times a 0 is 0, this minus 1 over here is what corresponds to

this 1 over here and, that becomes as minus 1 and this 1 and 1 dot product will give it to

a value of 1. So, I have a minus 1 plus 1 which makes it 0, I do the same thing over here.

So,  over  here  when  I  am doing  the  same  thing  these  4  elements  over  here  are  all

multiplied by these 5 it elements are multiplied by 0. So, you do not have an resultant

option this 0 and this 2 will correspond. So, this 0 into this 2 makes it a 0 this minus 1

corresponds to this 1. So, there is a minus 1, then there is a 2 and then there is a 1. So,

this effective result from this channels multiplication is ok.

So, I have a 0 from here and a 2 from here that makes it 2 and, now I take this particular

kernel, I have all of these 0s with these elements over here. So, these 5 elements do not

give me any results. Now 1 into 1 makes it 1 minus 1 into 0 is a 0, then 0 into 1 is a 0

minus 1 into 0 is a 0. So, the only result over here is a 1. So, I have a 2 plus 1 and then I

take another 1 over here, which is my bias. So, 2 plus 1 plus 1 makes it 4 and that is the

resultant value which comes down over here. So, you get down the point that it is very



much a volume which is getting convolved and that is the result in which you get down

over here.

Similarly,  you  can  keep  on  doing  for  all  other  locations  and  you  would  see  this  1

appropriately populated,  you repeat  the same thing for the 2nd kernel and, then you

would be getting down the 2nd channel of my output coming down, but remember that

the bias for the second kernel is what is present over here and, each kernel has it is own

bias and that goes down pretty  much with the yeah. So, this  was the easy option of

stopping at which I overlooked. So, if like we can go down to at any position. So, yeah

say this is the second position where I am located at. So, now, you that you have stopped

it down so now, you can again take the same kind of a multiplicative product sum all of

the dot products add down the bias and, you will be getting this value of 5 over there.

Now, keeping 1 thing in mind that this is how a standard convolution would work. Now

if you keep on repeating say these 2 outputs over here the 2 output channels and, then

they are also exposed to some sort of a convolution, then you would have the same thing

repeating over and over again and, then that is a pretty standard way in which this would

be going on. So, with that let us get back into our convolutions as well. So, this is what

we finished off discussing. So, that is how it was getting filled up completely and you

had your height and weight. The next part was on understanding pooling operators.

(Refer Slide Time: 11:15)



And these pooling was basically a way of reducing the size of an image. So, the whole

concept which I said was that there can be an option in which I would like to reduce, this

image size to half of it ok. So, the point is that if I have a 4 cross 4, then if I am reducing

it on each dimensions to half of it becomes 1 4th of the total area and, get is converted

into a 2 cross 2 matrix over there and, this is how it would keep on repeating itself. 

Now this pooling can be done in terms of something called as a max pooling, in which

what I would do is I would take down the maximum value and then place it in the middle

over there, or this can also be done in terms of an average pooling, in which the idea is

that in this 2 cross 2 matrix, I will take what is the average value and just resubstitute it

over there in my pooling layer over.

 (Refer Slide Time: 12:00)

Now, if I want to do pooling the earlier case was where I was using a stride of 2 2 pool.

So, that meant that my stride is equal to my width or an or height of the pooling kernel

which I am using, instead of that I can even choose to do continuous stride and that

makes it an interesting proposition over here. So, technically what this means is that if I

have some sort of an average pooling going down over here. So, that is equal to some

form which comes down over here and, this is my relationship between my width and

height and, then this effectively gives me basically a dilated a grayscale dilated version

of the whole image which comes down.



So, you can see quite amount of similarity between what is happening down at certain

number of operators in convolutional neural networks, to your standard operators in case

of  a  image processing  based solution,  in  a  standard  classical  computer  vision  based

approach and these are the ones which work out.

(Refer Slide Time: 13:00)

So, with that let us get into what is called as a LeNet. So, if you go by the standard

definition  this  is  the architecture which I  have directly  taken down from the authors

paper and, I give full citation to them I have I have not redrawn the whole thing because,

this is from a tutorial perspective this is possibly best rendering which we have for LeNet

available.

Now, the whole concept over here is that you take an image of 32 cross 32 and this is a

grayscale image ok. So, although we were doing our experiments on 28 cross 28 and the

whole thing was basically by reducing 4 peripheral pixels over here to get it down into a

28 cross 28 and, then that is something which matches down these feature maps over

here, but for reasons not quite well known to most of us we actually do not know what

happened to this original which was proposed on the 32 plus 32 and, while the actual

data which is available today is a 28 cross 28.

Now, how this goes on over here is that the first idea is take a convolution from this 32

plus 32 and, then this produces a feature map of 6 channels over here 1 2 3 4 5 6, which

you see over here as the number 6 in C 1 feature maps and, then the size x y size is 28



cross 28, now from there the next point is that we do a max pooling and convert it to 14

cross fourteen; that means, that there is a 2 cross 2 and a stride of 2 max pooling which is

applied  and  since  there  are  6  number  2  channels  the  same number  of  channels  get

preserved over there.

The next 1 is with C 3 which is the next convolution. So, this 1 2 3 this is the layers

along the depth and CS are for convolution layers S are for subsampling layers, which

the authors of themselves kept on defining. So, the next 1 is from a 14 cross 14 you go

down to a 10 cross 10 and 16 such maps over there from the 16 you do a subsampling

you come down to a 5 cross 5 size from a 10 cross 10. So, that is also a 2 cross 2 sub

sampling and, then you have 16 of these. So, you have 16 into 25 number of neurons in

total. So, 16 into 25 would make it basically 400 neurons.

Now, from 400 neurons you map it down through a fully connected day layer 100 and 20

neurons, which is C 5 from there it maps down to a fully connected network with 84

neurons from there it maps down to a fully connected network with 10 neurons and over

here, what is called as a Gaussian connection is basically a sigmoid transfer function.

Now with this kind of a sigmoid transfer function you can actually stretch down your

values in the range of 0 to 1.

So, typically since this is a digits classification problem over here on the output side

there is a 10 cross 1 neuron bank and this is a 1 hot neuron. So, any 1 of these neurons is

going to be 1 the rest of the neurons are going to be 0. So, we have a convention actually

of writing this one and the idea of writing this one is something of this sort. So, if we try

to write down a convolution we would try to express it in something of this one.

So, 6 c means the number of channels in the output, which we need to produce and that

will  basically  define  the  number  of  such convolution  kernels,  which  I  need to  have

within my convolution operator, 5 w over here means I am using a 5 cross 5 kernel size.

So, this is width of the convolution kernel which I am using and for simplicity we try to

use  square  kernels,  which  means  that  the  width  and  the  height  are  same,  there  are

possibilities of using say rectangular counters as well and within your coding exercises

you  would  see  that  we  always  put  down.  And  so,  when  we  start  down  with  the

convolutional ones you would see that we put down 2 dimensions over there. So, the first

dimension is the width and the second dimension is the height of the kernel.



Now, there is pretty much an option that you can put both of them the same, which works

out pretty much for natural images, but then there are certain sort of images in and say

which are non-linearly sampled. So, your x sampling along the x direction and sampling

along the y direction is pretty different, in that case you would more of preferred to put

down 2 different kernel dimensions.

So, your width of the kernel would be very much different from the height of the kernel.

Now here what I do is I take a stride of 1 and, then a padding of 0. Now one question

comes down is I have already written this 1 down for you, but can you actually given this

information over here can you actually find it out. So, that that is a very pretty exercise

question which you can a lot of find x expect.

So, it is not just from a examination point of view that you big ask this question over

there, but then most of the authors and then most of these publications which have these

convolutional neural networks, they would just be drying out the network to you, they

would give down dimensions of the results at each of these layers, but most of the time

not even speak about what was the kind of the convolution operator which was used over

there.  And, now you have to  figure out  from your side that  what can be an optimal

combination of these convolution kernels which were typically used. So, we generally

start by configuration whereby if we take down the minimum size of the convolution

kernel and, here the idea was that if we if we go down by the concept of a minimum size

of the convolution kernel, then let us see what comes down.

So, you see that the size was decreased on both the sides by a dimension of 4. Now if

that has to work out 1 option maybe that I do not put down a padding over there and,

then I take a 5 cross 5 and take a stride of 1 and, that pretty much fits down within this

kind of a constant yes you can have other convolution options as well and, then pretty

much  I  would  say  that  please  try  them  out  as  well  to  see  which  other  sort  of  a

combination, but 6 c in (Refer Time: 18:51) will remain constant because your output

over here has 6 channels, unlike anything else and that is pretty much something which

defines the number of channels over here.

So, similarly let us look into this subsampling over here, now the subsampling if you see.

So, it was going down by a factor of 2 on both the sides. So, that and the number of

channels will be preserved because that does not have any impact on subsampling. So,



this would mean that I have some sort of a 2 cross 2 kernels and a stride of to employ

over there. So, this subsampling layer over there or the max pooling is with the 2 w 2 S

ok. The next 1 is again a convolution which produces 16 channels output we again use a

padding of phi of width of 5 kernel over here, stride of 1 and a 0 padding over there and,

that technically brings down 14 grows 14 channels folding cross 14 sized output to a 10

crossed and sized output.

So, remember it was w minus so, so your this dimension M minus w which was the

width of the kernel plus 1. So, that makes it plus 2 p w; obviously, now your pad over

here is 0. So, that does not contribute you are width over here is 5. So, it becomes 14

minus 5 plus 1 and that makes it 10 and, that divided by 2 S which was your stride over

there and the stride since we are keeping ah. So, divided by S w sorry. So, S w was your

stride and since stride is 1 so, this whole division factor over there unifies and then you

get down your option.

So, similarly the next sub sampling and the max pooling is of 2 w 2 S and the whole

network can accordingly be represented something like this that, you have your input

which comes down from your input you do a convolution with 6 c 5 w 1 s 0 p ok, from

there you get into a max pooling with 2 w 2 S from there you enter into a convolution

with 16 c 5 w 1 s 0 p, from there again you have a max pooling of 2 w 2 S, from there

you have a flattening.

So, this flattening is to get down 400 neurons which has which comes down over here.

So, you linearize and get down a flattened layer of 400 neurons. So, which basically

means that here do you have 16 into 5 into 5 that is a 3 d array in which a top level

flattening is an operator which basically  converts  this  3 d array which has 100 such

points into 1 single 1 dimensional array. So, it is a 400 cross 1 array which you have as

of now and, that can be now connected down to your fully connected layers.

So, there is no learnable parameter as such when you are flattening it out it just some sort

of a indexed arrangement into 1 single 1 d array, that 1 d array can now be connected 100

and 20 element array through a fully connected layer and these weights over here are

trainable weights, from 120 they go up to 84 these are again trainable weights from 84 it

goes again to the output, these are again trainable weights and here you have a non-



linearity  of  a  Gaussian connection.  So,  this  together  defines  my sort  of  connectivity

throughout the whole network which I have now.

 (Refer Slide Time: 21:58)

So, how it works and looks like is something of this sort, so I have taken down this from

the direct website of LeNet and, you can actually get down much more details if you are

there on this particular website of Yann Lecun.

(Refer Slide Time: 22:11)

So, these are from the Yann Lecuns website and let us just zoom into that. So, if you look

over here.



(Refer Slide Time: 22:19)

 LeNet 5. So, LeNet 5 comes down from the fact that you have total 5 number of layers

over there. So, he has a very good implementation of so, if you recall back from our

discussion over here and we count down the number of layers. So, there is 1 2 3 4 and

then this  whole part  over  here which  becomes 5,  or another  explanation  is  basically

taking down the number of flow interval parameters. So, you have 1 convolution which

has 1 learnable parameter 1 the second convolution, which is a learnable parameter 2

because subsampling does not learn anything.

Now, then so we have 2 layers which have 2 different learnable parameters, then from

here you get down to fully connected layers. So, 1 2 3 there are 3 weights which you

need to learn down over here, in total there are 5 different non-linear transformations and

learnable parameters through which this network works and for that reason this is also

called as a LeNet 5 layer.

So, here if you look into it so, he gives a her an intuitive explanation of layer 1. So, this

is  basically  the output  which comes down from the first  convolution result.  So,  you

remember that there were 6 such channels. So, this is 1 2 3 4 5 6. So, you have an image

this input going down over there you convolve with 6 different kernels and, this is the

output you see on each of these resultant over there. Now from there it goes on to a layer

3. So, layer 2 was basically a subsampling layer. So, that made it half of this size. So,



from a 32 cross 32 it became 28 cross 28 from here it became 14 cross 14 and, then we

had 16 such combinations coming down.

So, you have 1 2 3 4 you can just count on there are basically 16 such layers over there in

layer 3 and, you had another sub sampling which make it made it to 5 cross 5 and, then

we had a convolution run down on that 1 as well and this is the output of that. So, there

were total of 16 5 cross 5 channels which comes down over here. So, this is the result

which comes down. Now if you see in the initial you had an image, then you had some

sort of age oriented or accentuated versions of it, then we were getting down some sort of

a sparse representation and finally, what you get down towards almost the end which is

your 400 neurons this is technically a bit stream.

Now, this big stream is something which is important in terms of firing out your neurons

to classify, what is being seen over here and, that is how this result keeps on coming

down. So, what they do is that there is a running window kind of a thing. So, you start

from here and then here and you have 3 different detections being carried out and that is

what is being shown over here now if all the 3 detections when they populate and show

the same number, you see that number also coming down over here as the answer.

(Refer Slide Time: 25:09)

So, this is based on a lot of papers and work which they had and the earlier ones was

what came down around in 1989. And since then it has been going on. So, there they

have been lot of advances put down onto this particular field and, till recently when we



had the boom. So, over a long period of time it was really hard to actually understand

and  create  down  these  bits  and  create  down  a  learnable  aspect  over  there  and,

accordingly to took a lot of efforts for the community to grow up, but today that we have

access  to  compute  power. And we have  a  good amount  of  access  to  a  libraries  and

making out easy prototypes for these methods, they are coming down into the forefront.

So, in the next lecture we would actually be implementing LeNet 5 by ourselves, you

writing down our codes and doing it and, eventually from LeNet 5 we will be getting into

understanding more and more details of how other convolutional neural networks work

and, what modifications can we do within that architecture. So, what can be different

kind of so, as of now we have just studied on the architecture, but you know that there

are other aspects of cost functions, there are aspects of learning ability your learning

rules, your optimizations, how do you handle down batches and do it. 

So, we will be using them as a lot of different examples in order to come down of how a

practical network can be trained. So, till then we just stay tuned and then get back to you

later on. 


