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Welcome. So, in the last lecture, we have been going around with how to update down

different networks.

(Refer Slide Time: 00:23)

And, there are 3 different kinds of updates which you can do is what I was speaking

around. So, today I am going to actually demonstrate out on how these 3 different kinds

of updates rule in a neural network would work. So, one of them is where you have all

the gradients accumulated at the end of the network and then within each epoch. So, you

keep on sending all the samples through it, all the samples whichever you have in your

training data and then you sum up all the errors over there and then you take a gradient

of the error and you back propagate throughout the network, that is the way of how I was

explaining you the whole concept of back propagation in its own way.

There can be another way, where say you are not able to handle that much of data. So,

say that your training data is something like 100 GB in size your system RAM is limited

to some 8 GB or 4 GB. You will never be able to actually put down the whole thing and

your model say it consumes about a few 100 MBs over there your system voice and



everything is consuming and out of your 8 GBs you are just left with a viable of 5 GB

that is the maximum what you can do.

Now, if you load down your data, the maximum data you can load is 5 GB never 100 GB

at a point of time and in that case we came up with something which is called as a batch

learning rule in which in the idea was that you divide this whole set of your training

examples into smaller subsets each of them is called as a batch, you feed within each

epoch you are going to feed down all the batches. However, you feed one batch you get

your error now you can back propagate that one through the network then you feed the

next batch you get your error back provided through the network. And, the reason why

we cannot just accumulate out everything and do a back propagation is because you have

an response of the each layer on your output which is also multiplied down with the

gradient of the error coming down. So, that was how our gradient descent was derived.

Now, since you need to preserve each and every instances output from the network for

updating what is inside the network of the weights over there, so, you can use only just a

finite number of samples and you cannot just somehow accumulate over the samples

over there. So, this kind of a thing is what is called as a batch update rule and the other

one is plain and simple vanilla update rules in which you put down you put a sample you

get it is error you back propagate it out, then you put the next sample you get it is error

back propagate and then what this would mean is that say you have some 10000 samples

or 60000 samples as an MNIST in your training. So, within each epoch you will have

sixty  thousand  times  of  an  update  of  the  network  which  is  really  large  from  a

computational stand point. So, you will have to compute out gradient for every single

sample that will be computed 60000 times per epoch and you will do it.

On the other side, if you compare it with the first one where I am just going to update the

whole network at the end of every epoch it is just once then I am going to calculate out

the gradient and it is once that I am going to do this back propagation and update over

there.  So,  this  is  a  plain  difference  which  comes  out  and  in  fact,  this  has  a  very

significant role when you look at the amount of time it is going to incur.

So, let us get down with each of them. So, how we have divided is we actually have 3

sub parts of this lecture number 24 which is kept on the jit release for us. So, 24a is to do



with updating parameters once every epoch. So, this is a scratch pad written down for

your own understanding of how we change down, once we can do that every epoch.

(Refer Slide Time: 03:38)

.

So, our customary first part of the ceremony of running down any code is just to get

down your libraries which are there on the header.

(Refer Slide Time: 03:51)

Next, you are going to get down your data now look over here that though I defined

down something called as a data within a batch size of 100 and that is just from the data



loader perspective. It does not have anything to do with my trainer perspective inside

over there.

(Refer Slide Time: 04:04)

Now, I checked down my GPU if that is available let us well and good.

(Refer Slide Time: 04:10)

.

And, then now, I define my network and this is the plain valley network as we were

using down in the  earlier  example  for  doing for  showing you different  kind of  cost

functions and the dynamics. So, here also it is the same one. So, you have a 28 cross 28



batch of your 110 digits in MNIST which amounts to 700 and 84 neurons. They are

connected down to 400 neurons, these are connected down to 256 neurons and this part

of it which is your layer one is what constitutes the feature discovery part of the layer

with 2 different hidden neural network layers and that is connected down to the final

classification which match from 256 neurons on to just simple 10 neurons and then this

completes down my a complete network.

Now, on the forward pass of the network what I need to do is given any input to layer 1, I

am going to get down certain output and then I feed that to my layer 2 definition over

here which is my classification part of the wing and I get my output coming down over

here and this defines my plain simple neural net.

(Refer Slide Time: 05:19)

Now, if I have a GPU available then let us just convert it onto a GPU array. So, that it is

compatible while running it out on a GPU and then we start down our simple classified

training routine over there. Now, in the classified training routine I choose to just do with

10 epochs, this is just to keep it plain, short, sweet and simple I do not have any issues, a

learning rate  of 0.1 and the criterion over here because it  is a classification problem

which we are just trying to do we are just going to stick down with the cross entropy

loss. Now, you can use a negative log, likelihood loss you can use a multi margin loss,

anything as you would on, but we are just going to stick down to simple cross entropy or

binary cross entropy loss over here.



(Refer Slide Time: 05:55)

So, now, within my iteration of over epochs, it is going to iterate over a lot of epochs and

for me it is going to be just any epochs over which I am going to iterate it out. Now, over

here what I am going to do is one is just starting timer to keep a tab of how long it takes

to execute each of them and that is to show you exactly what is the difference and trade

off you get down while shifting from one to the other.

(Refer Slide Time: 06:28)

.

Now, here the first part is basically create down your data loader such that it can keep on

loading all the data and then you in case you have your GPU available then we are just



going to convert my inputs and all the labels into a GPU compatible array and then you

do a forward pass over the network. Now, within each epoch once you have a forward

pass of the network you get certain output coming down, over that you need to find out

your loss now once your loss comes down over there.

(Refer Slide Time: 06:50)

.

Now, what you need to actually understand is that it is going to run over all the batches.

So, in your batch loader what you have done is that it is going to fetch down some 100

images or something. So, let us go down yeah. So, your batch size is 100, it means that

technically it is going to fetch down 100 images in one burst from your hard drive and

now, what I am going to do is getting back over here I am actually going to cumulate my

errors over all such ones which are fetched out. So, technically on my training data set

within MNIST you have 60000 samples, I am fetching down 100 at a time.

So, that means, that I will have 600 such fetch operations within one single epoch in

order to get all my data set coming down from my hard drive side over there.
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So, when I am calculating out the loss, I need to accumulate all of these losses. So, that I

get known the total error at the end of the epoch itself and that is what I am just doing it

over here. Now, the point which goes down is that I need to find out what is the total loss

at the end of being able to load down all of these ones.

(Refer Slide Time: 08:08)

And,  now  given  the  fact  that  this  i  which  I  am  using  over  here  this  is  a  variable

commodity. So, for me it comes down that this will be iterating from 0 till 599 and that is



equal to 600 over there and it depends on how many number of batch fetches you had

over there. So, that is why I just divided down by i plus 1.

(Refer Slide Time: 08:16)

Now, this plus 1 comes down from the factor that i is a number which starts from a zero

indexing. So, the highest number which it would get down is 599, in order to get down

the total size or the total number of numbers between the range of 0 to 599, that is the

last value plus 1. So, that is a simple argument why you have an i plus 1 written over

there. Now, after that you zero down your gradients then you have a backward on the

total loss which is taking down nabla of the cost function itself.



(Refer Slide Time: 08:56)

Now, once you have this derivative of the cost function taken down and what we will be

doing done is actually to do an update for following down the vanilla gradient descent

approach over there and that is typically what we do.

(Refer Slide Time: 09:04)

Now, once we have this whole thing updated over here, my whole purpose is that let us

see what sorts the validation which comes from over there. Now, for validation we are

just going to load down it on my testing data set which is 10000 examples over there.

Now, for  each  of  them I  just  get  my  output  coming  down provided  a  input  to  this



network, so, the network which is updated as part of this particular epoch at any given

epoch whatever is the state of the network.

(Refer Slide Time: 09:32)

Then we get down our predicted values and then finally, we check if the predicted value

is equal to the label over there and then sum it up in order to get done the number of

correctly classified samples over the whole batch.

(Refer Slide Time: 09:37)

And that is what is going to run out my complete system for trying to do an update once

every epoch.



(Refer Slide Time: 09:48)

You can pretty  much see how much time it  takes.  It  takes  almost  like 2 seconds to

complete an epoch which is pretty fast to say. There are 60000 samples which are going

through it and it is getting updated at every point of thing. However, though the accuracy

is not that great over there. So, somewhere around the tenth epoch we are standing at just

merely 46 percent of accuracy.

(Refer Slide Time: 10:10)

Yes, not something to be really excited at a point of time.



(Refer Slide Time: 10:14)

However given the fact that we started with a 10 percent accuracy which is perfect I

mean that is a random coin toss, because you have 10 classes. If you are randomly trying

to, it is something like this; you have 10 buckets and I am throwing a ball to enter into

one bucket and this ball may enter into the right bucket or it may enter into a wrong

bucket. So, there is one ball which has the number 1 written to it, if it there is a 1 by 10

chance that it will land into my bucket number 1. The next ball will also have a random

one tenth chance that it will land up into my current bucket. So, technically your random

guess accuracy will be somewhere around 10 percent whereas, once you start learning

down over there, so the accuracy keeps on growing and then we figure out that it goes to

somewhere around 45 percent on this case.



(Refer Slide Time: 10:58)

Now, the critical part to see is that it takes roughly 2 seconds to train every epoch and

that is pretty fast over there also the loss curve which you see is quite smooth.

(Refer Slide Time: 11:19)

However, given that fact there is still a challenge which we were facing down and that

challenge is if I am not able to load all of those 60000 samples of data together onto my

memory and then I will have to actually update it at every single point of time.



(Refer Slide Time: 11:23)

And, that is where this batch learning rule comes down to play.

(Refer Slide Time: 11:26)

.

Now, batch learning over here what we will be doing is you have a batch size which is

set down as 100, it means that every time you are fetching down some 100 images at one

single shot from the drive and then using it.



(Refer Slide Time: 11:36)

Now, once the data loader is done, I check out whether my GPU is available and voila.

(Refer Slide Time: 11:42)

Once that is there, I have my neural network which is synthesized and that it is the same

neural  network.  So,  I  am  not  technically  changing  out  anything  over  there  on  the

network.



(Refer Slide Time: 11:51)

And, that  does not  need any further  definition.  So, check out I  get  my new electric

converted on to cuda and then I try to start my classifier.

(Refer Slide Time: 11:57)

Now, here also I am going to train it over 10 epochs.



(Refer Slide Time: 12:08)

However, the difference which comes down is in terms of my loss over here, because this

loss over here is just what is computed poor, sorry. So, you have your loss which is

computed over here which is for every epoch. Now, if you remember the earlier one in

the earlier case I was basically calculating out these losses and then cumulating out the

loss over  here somewhere  which is  outside the inner  loop which runs  over  the total

number of batches which is loading.

(Refer Slide Time: 12:33)



So, this update over here was happening once every epoch itself whereas, over here you

would see this update is happening within every batch itself. So, this is present within the

inner loop not within the outer loop and that is the difference which comes down with a

batch loader.

(Refer Slide Time: 12:48)

Obviously, it is supposed to be a bit more computationally expensive. So, let me just run

it down because. So, we can just utilize the rest of the time to discuss around it. Now,

once you have this updated down, so, there will be multiple number of updates which

will happen down in every epoch and then you find out what is the total loss at the end of

that epoch and that is what you are storing now.



(Refer Slide Time: 13:20)

On the other side, within every epoch I am also trying to do a validation with the test

loader coming down over there and then we will have our timing and all of the other

stuff predicted out over there.

(Refer Slide Time: 13:24)

Now, typically you see that here also it takes almost the same time, about 2 seconds to do

it and it starts with a decently better accuracy than you had in the earlier case. Now, this

should be coming down as a question to you, as to why did it actually start with a higher

accuracy as compared to what it was in the earlier case.



(Refer Slide Time: 13:38)

.

Because, in the earlier case you did see that barely it was able to get down to about 45

percent  of  our  accuracy,  whereas  here,  it  just  immediately  started  with  having  92.7

percent of accuracy.

(Refer Slide Time: 13:43)

Now, remember  this  one  thing  in  the  earlier  case,  the  whole  network  was  actually

updated at most 10 times that is a total number of times though everything was getting

updated. Here, within every epoch it actually gets updated 600 times. So, your weights



have changed down 600 times within every single iteration what it has done and now by

the end of tenth epoch there have been 6000 such updates which have happened.

Now, if you go back to the earlier  case and actually run it  over an iteration of 6000

epochs you would actually tend to come down to the same accuracy level and the same

kind of a curve as you are getting down over there. So, in the earlier case, if you were

running it down initially for 600 epochs you would be getting down this accuracy. If you

have run it down for say 602, which is 1200 epochs you would be somewhere around

this accuracy point as compared to what you are having over here.

(Refer Slide Time: 14:47)

And, that is a distinct advantage we are trying to do a batch update you are taking almost

the  same amount  of  time.  But,  you  have  a  much  faster  way  of  coming  down to  a

convergence, because the number of times it is actually updating itself and correcting the

mistakes which it was making is much large, though it is not updating itself on the same

data. It is getting a newer instance of the data and it is looking down.

So, it is the same thing as say if you are trying to learn up a subject. So, the more the

number  of  books across  which  you study and you give  an  exam in between  or  get

yourself assessed the better you are in learning a subject’s task rather than taking a bigger

book, a fatter book and trying to mug it up across the whole semester. So, that does not

technically always find out a way whereas, if you have this smaller handout books or

notes taken down from multiple people and you try to get into a subject because you are



getting exposed to more and more different variants of how you learned on a particular

topic. So, it is the same thing which comes down as a batch update learning rule for a

neural network as well.

(Refer Slide Time: 15:58)

Now, that would bring me to the next one which is a instance or every sample update and

this is let us say the same as you basically, read one section of a topic in a book and try to

correct yourself for anything else asked on that particular topic and let us see what comes

down. This is quite interesting because here what would happen. So, let us just do a walk

through. The walk through is pretty simple you start with just loading down your initial

forms over there then you do a data loader.



(Refer Slide Time: 16:22)

And, then over here it is just to print down your number of samples and there are 60000

samples.  So, technically, that means, that within every epoch if I am going to do an

update per sample, so, I am going to do that update 60000 times over there.

(Refer Slide Time: 16:31)

Now, I define my network which is the same network. I get it on my GPU put it down

because I have a GPU available and then I start my training instance over here.



(Refer Slide Time: 16:40)

I will really set this one running; it is going to take a bit amount of time. In fact, it is a

significant amount of time as you would see down over there. So, this is going to run

down over 10 iterations you see a distinct difference in the learning rate which I have

taken down over there because this is significantly lower than the learning it in the earlier

cases now. The reason why this is so is, you are going to update down at every single

sample as it  keeps on coming down. Now, your total  gradient which comes down is

dependent very much on what sample was over there. So, every sample is not going to

have the same range of error.

In the earlier cases because you were taking on an average over all the samples over

there, average of the error, so, it was getting down to some sort of average tendency a

lower bound over there, a much more consistent bound between multiple batches which

come down in an epoch. Whereas, over here for every single sample it is going to be

either it can be 0 or it can be very large. So, if there is a significant deviation over there

would be a very large error which comes down and that is going to impact actually the

total weight update which you are getting down and in your whole thing.

Now, in order to keep it on a safer side we would like to put down a learning rate which

is lower so that at any point of time the dynamic range of the weights do not just get

overwhelmed by an unguided down by the dynamic  range in which my updates  are



changing. So, that is the only reason for keeping this learning rate at a lower point of

time.

(Refer Slide Time: 18:10)

And, then, I basically start my whole iterator over here.

(Refer Slide Time: 18:14)

.

Now, in the inner range what I do is, as in the earlier case I was actually doing a match

loader. So, I was able to load down 100 images per batch, but here I am just going to



load down 1 image at a point of time or this is equal to setting down a match size of 1,

you can say.

Now, for each image I am going to find out my output whatever it is then get down the

loss which is my out of my criterion. Now, once the loss is calculated down we do a

zeroing of all the gradients and then do a back propagation over find out a gradient of the

loss itself on nabla of the cost function and then write an update rule over here and here

what I am doing is basically, I sum up the average loss taken down over each of them.

(Refer Slide Time: 18:57)

So, technically this means that, since I have 60000 examples present down within one

single training set in 1 epoch. So, there will be 60000 times there would be updates

happening over there. Now, pitch this against the earlier case. In the earlier case you had

600 times of an update per epoch, here you are able to have 60000 times of an update per

epoch. The downside do is that every time it is with one single sample. So, you are not

tending to be on the average case of the errors which is coming down over there. As well

as you are going to solve much more number of update equations.



(Refer Slide Time: 19:34)

So, 6000 versus 60000 that is 100 times more is  the amount of compute which will

happen downpour epoch over here and that is how it is getting solved.

(Refer Slide Time: 19:42)

So, the rest of it is pretty simple that within each epoch once the training per sample

based is  over  and then  we write  down the  test  data  loader  which  loads  up  the  test

example and then with within every epoch, I basically try to look into it.



(Refer Slide Time: 19:55)

So, yeah this actually consumes a significant amount of time. You can see pretty much it

consumes of almost over 1 minute 4 second which is close to a more than a minute over

there. However, the starting accuracy is really large; you just start down with an accuracy

of 96 percent. Now, that is great right, because I just solved down all the examples and

that my 0 at epoch whatever it was it is 96 percent; keep one thing in mind, in the first

example where I was doing an update over the whole epoch. So, that is where I was

randomly guessing before I made any updates over here. Here, at the end of my first

epoch it is already has been updated by 60000 times, at the end of my second epochs it is

basically 1, 20,000 times that the whole thing is has been updated.

At the end of third epoch it is 1, 80,000 times that it is getting updated and that means,

that the number of times it is seeing and it is trying to update itself is much larger. So, if

you take the example from the first case where we had just trained it over 10 epochs and

there were updates just for 10 times over there, you train it down for 60000 you would

inherently get down an accuracy which matches down about 96 percent, quite easily with

without much of it.

So, this is a place where you will have to actually now start to think of syncing and

tuning around to play with it as to how they mix and match and work. On one side while

just trying to do one update per epoch is not a great idea because you will have to run

more number of epochs, the other one is trying to do a batch update which takes almost



the same time as doing one update per epoch whereas, in the in the batch update case you

actually  reach down a much higher  accuracy much faster. The other  one which  is  a

instance based object or per sample, this is where you would possibly be reaching down

the  highest  accuracy  at  the  shortest  possible  epoch number. The time  consumed per

epoch is going to be significantly large and that is really problematic.

(Refer Slide Time: 22:01)

If you can think of sparing that amount of time it is well and good, but for most of us that

is that is not a practical feasible solution and for that perspective we do understand that

actually trying to have a batch update rule is a much practical approach to do it and

which is what is followed on. In fact, the way that data loader was written the reason

why we were loading out in batches and trying to do, is everything is guided because this

learning rule itself is much more better and comprehensive. So, it is a good trade off

between trying to reach down your saturation accuracy to the amount of time you take to

reach down that accuracy per epoch. So, if you look into it that what is the total number

of seconds I have spent in order to come down to say 96 percent of accuracy.

So, over here this is going to be somewhat like 1 minute 4 second is when I come down

to a 96 percent of an accuracy. As compared to this batch update where I was able to

come down to 96.7 percent of accuracy within just the fourth epoch and that is like 2

second per epoch. So, it is basically 8 seconds is my total time taken down in order to

come  down to  the  same accuracy  as  versus  1  minute  of  time  to  come down to  an



accuracy which is closer to that in this first case and that is a significant advantage of

trying to use a batch update and why we would be sticking down to that. Since, I have

kept it running for 10 epochs you just have to wait over it whereas, if you look into this

accuracy facts over there you see that after some point of time it just does not increase to

that much of a level.

So,  the  amount  of  time I  am spending down in  going down from 96 percent  of  an

accuracy to say 97 percent of an accuracy is close to about more than is about 7 minutes

let  us say 1 minute 4 second into 6 is  close to  over 7 minutes  whereas,  it  does not

actually pay off. In 7 minutes you are being able to just gain one percent of accuracy as

compared to the earlier case in a batch update where like just within 2 seconds you have

been able to see a change in accuracy of 3 percent. Now, that is a significant change

which comes down and this initial curve, that in the first 2 seconds itself you reached out

about 92 percent and that compared to here where it took you almost a minute to each up

to 96 percent.

So, these are simple tricks around the point of why we would be using one and not the

other way of doing it down and what can be a better way of doing and the other point is

that within a batch update you definitely save out on a lot of your RAM space. You might

not have enough of space to load the whole dataset, but again just loading one single

sample at a time is also not a feasible. You are going to spend a lot of time just doing a

hardware IO operation, you are going to fetch down something from your hard drive and

then copy it down.

So, there is a significant  amount of DMA transfer operations which is involved over

there  and  since  typically  your  DMA buses.  So,  from  your  knowledge  of  computer

organizations and operating systems you do understand that your DMA bus is almost like

10 times or even 20 times slower than your CPU block and the bus between your CPU to

your RAM and that is going to guide it down. Whereas, you can do a batch update or say

a significant number of throughput updates over there and with a batch loader this is

where you basically come down to a advantageous position as versus doing it with just

one single sample at a point of time.



(Refer Slide Time: 25:23)

So, if you look down, somewhere around 8 epoch which is almost close to 9 minutes that

we have been speaking around, it is somewhere at 1.7 percent of a change which is there

and then that is not something which is appreciated in any way for your own practical

purposes. So, let us just wait for some more time and we can actually see the same kind

of a curve coming.

(Refer Slide Time: 25:54)

However, if there is one crazy thing over here instead of trying to plot down what we

plot over here is basically the loss at every epoch. Now, the whole point over here is that



instead of trying to plot the loss at every epoch, now let us try to plot the loss after every

single sample as it keeps on going. You would see a very crazy curve like it will come

down as a jittery curve and in certain times you would see that it rises up then comes

down then rises up and comes down. But, however, the average trend over that particular

line is something which will follow down. Now, compare that with learning curve for

every batch itself you would see that that every batch one has a much smoother decrease

as it goes down. So, I am almost done with my ninth epoch and if you wait for some

more time you can actually see the tenth epoch going out.

Now, look into one point; this is what is we call as a point of inflection. This is where

you see that the test accuracy over there has actually started decreasing. Now, this is a

point in classical learning theory is what we call that the network has started to memorize

whatever has been given down to it is training example.

So, it is getting into something which is called as an over fitting problem. It is very good,

it is reducing down the error if you look into these losses. The loss has decreased because

this loss was computed on the training dataset itself; whereas, this accuracy is decreasing

instead  of  increasing.  If  your  loss  was  decreasing  then  your  accuracy  should  be

increasing  whereas,  here  do  you see  that  your  accuracy  had  decreased  over  here  as

compared to this one. It suddenly again increases over, here it does increase, but this is a

point  of inflection  which is  now, starting to  happen over here and that  is  something

called as an over fitting problem.

So, later on, in the other lectures we will be going down to how to identify these points

of inflection.
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And, when the over fitting is happening and what you can do to actually cut down these

issues of any over fitting happening.

(Refer Slide Time: 27:49)

You can typically see like around these epochs is when it started these inflection. And,

from our experiences we know that once it is at this point and beyond everything it is

actually trying to memorize the network in a big way. It is just trying to pull itself out,

though of that practice, but this is something which happens if you are training it over a

longer period of epochs.



So, with that we have done some basic understandings of the different kind of learning

rules from your global updates per epoch to batch updates to single sample based updates

and the pros and cons around with that. So, with then, stay tuned until the next lecture

comes up.

Thanks.


