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Welcome. So, today, we would be learning about different kind of learning rules and

optimization techniques. So, while we have done a few on the architectures and you have

also been upraised on the different kind of training mechanisms. And at some points of

time, while we had also played around with cost functions of how to use it, and some of

these cost functions were what were typical for classification problems, the others were;

what was typical for regression problem. And on the other side, what we were looking

down is more of trying to understand how to train these networks. And while we had

finished off in the earlier class on vanilla descent gradient or the most simple form of

learning out these kind of networks called as a decent gradient rule.

Now, here what I am going to do is at you have seen that while we are writing down the

codes for a few of these examples where the data was quite small you could actually do it

on the vanilla way. And then for the others where the data set was a bit larger and we

want did not want to write down so many codes for training it down we chose to use one

of these things called as an optim package. And within the optim package, what we were

doing is we could choose down what kind of optimizer we were supposed to use. And in

general we have seen that we have been using stochastic gradient descent SGD optimizer

as well as ADAM and in some of the cases we were sticking down to ADAM because

that is an optimizer which was giving a convergence criteria.

Now, there are different ways of working around with that and how it works out as well

as you have seen that we were using another concept called as a batch learning. So,

today’s lecture is more of going to focus on what is the similarities and the differences

between each of them and how they end up trying to solve the same problem overall over

there.



(Refer Slide Time: 01:57)

So, without much of a delay let us get into how it is organized. So, the first one is where

I would be doing a basic revision over the vanilla gradient descent and then eventually

would get into the backpropagation rules. Now, for backpropagation over there, we have

we typically have three different mechanisms of doing it, one of them is called as the

epoch update rule in which you are going to backpropagate only once in an epoch and

that  is  only  when  the  wait  gets  updated  over  there.  So,  your  gradient  and  your

backpropagation equation is solved only once per epoch

The next one which is called as an batch update in which you have seen down in the lab

exercises that in batch update what we were trying to do predominantly is that we try to

update it multiple times in an epoch and there is a fixed number of samples which come

down and form down a batch. So, it is not something like epoch update because it is

multiple number of times. And the one of the major reasons why we were doing that was

we might be limited on the memory capacity of the net of our system which we are

implementing.

Now, typically, the problems which we have been taking till now are just a few 100 mb

of data and it does not cost so much on the RAM. Most of your system RAMs are greater

than 4 GB. So, it is not much of tedious task over there and. In fact, you can load the

whole data set on the GPU as well if you have a descent config of GPU available with

you.  Now, the  challenge  comes  down say  if  you are  handling  down a few hundred



gigabytes of data, so which is where you would even saturate and run over your typical

RAM of a system. So, today’s most of the pc consumer grade PCs would allow you to

support up to say 64 GB or even some of the cases maybe 128 GB of RAM support.

Now, there are few server class machines with Intel Xion process, which would allow

you to go up to 768 GB or even more up to 1.5 terabytes of RAM. So, however, the

challenge is that all of you are not going to get an access to that one and it costs, it

significantly costs I mean those systems are about 10 to 20 times more costlier than most

of your typical desktop grade computers. But then that does not restrict you that if you

have a desktop grade machine that you will not be able to actually work out any of these

bigger large sized data sets say 100 GB is just typically what would be there for any of

the video problems which you would deal with.

So, if you are looking into autonomous driving kind of problems and or any kind of

video analytics which will come down a bit later on you will have this large kind of

thing. And even imagine trying to solve the whole image net from scratch that is also

going to take you that much amount of space over there. So, in those kind of cases is

where batch update comes of help and what you are seeing now is within your by torch

environment batch update was basically a single function call. So, you had to do your

data loader and configure it out and that just solves it out.

So, today I am going to get into the whole mechanism as to how this whole mechanism

works out. And last but not the least is what is called as a sample update rule and in

which  like  for  every  single  sample  which  goes  into  the  network  you  have  one

backpropagation. Now, the costliest of all is the sample update rule, but you would be

seeing, so in the subsequent one where we have the tutorial on each of these being used

you would be looking down at while it is the costlier one. But then by virtue of multiple

number of updates what comes down, it would technically take down lesser number of

epochs to converge as well. However, the dynamics is also very high. So, there is no

always, there is not guaranteed that it will always converge.

And on the other side of it,  in optimization techniques while we do the plain vanilla

gradient descent basically revision over there in optimization techniques, we are going to

do  around  with  stochastic  gradient  descent.  And  once  we  are  done  with  stochastic

gradient descent, the next one I will come down is adaptive momentum or the Adam



optimizer. Now, these are not just the like these two are not just the only one which are

available, so you have conjugate gradient descent you have LBFGS, you have a multiple

of those any of those convex optimization techniques which are available over there.

However, given the fact that we are dealing with piecewise convex function which we

need  to  optimize  over  here  within  our  neural  networks.  These  two  are  the  most

commonly used; and commonly used in a sense that they have been found from majority

of the problems the community has formed guaranteed convergence with these two as

well as the fastest convergence and least amount of variation on the run over there. So,

that  is  the reason why we are sticking to these two mechanisms and explaining  you

around that.

(Refer Slide Time: 06:26)

So, let us get into revising this vanilla gradient descent. Now, what comes down is you

will start with the basic neural network formulation and how we had come down to the

gradient rule over there. This is more of just to get you a revised concept. And we are

going to take all of those concepts subsequently down the lectures.  And for that it  is

always good to just have the notions and notations once again clear in your mind.
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Now, say that I just had a three-dimensional input over there, which has three different

variables x 1, x 2, and x 3 coming down from three different senses that is how I was

explaining in the earlier case. And then it is going down and link down to one of these

predictive vectors one of the predictions p 1 and since it is a predicted state and not the

true state; and for that reason it is called as p 1 hat. Now, over there how it is related

down is the first part is just a linear summation over there with weights coming down

and then subsequently what you have is a non-linearity imposed on top of it. And now

once that part is done so this is for your first prediction.

(Refer Slide Time: 07:28)



Now, for the second prediction, it would again keep on going in a similar way. So, in the

second prediction, it gives you for p 2, and then you have your equations coming down

for p 2. And similarly, you can keep on getting it down for any of the kth neuron over

there, connect in the jth neuron and then you get your p k hat. Now, once this set of

equations comes down over there, you have your all the piece. Now, you can actually

write them down in terms of some sort of a tensor representation where all of your y’s

get represented in terms of a tensor, all the biases get represented in terms of a tensor.

And then your weights are what were all say row matrices over there you just you place

one row matrix below the other row matrix and subsequently you got a 2 d matrix over

there of your weights coming down.

Now, with that you have this very simple equation which is just tensor product, inner

product over the weight and bias matrix and the input matrix and then you have a non-

linearity imposed on top of it. And the since all the y’s are independent of each other,

each element of y is independent of each other, and it is tensor over there and the non-

linearity is a scalar function.  So, you can pretty much apply the non-linearity  on the

tensor and output is also going to come down as a tensor, so that is clean and clear with

us.

(Refer Slide Time: 08:43)

Now, the point was in terms of error what we could do is we could measure down the

error for each of these predictions over there. So, for the first prediction, I have one error;



for the second prediction, I get my error; for the third and then if you want to generalize

it  out,  what  we would  typically  end  us  getting  is  a  Euclidean  distance  between the

predicted variable and the true state of the variable. So, the true state of the variable

which you would like to predict is what is p, and the predicted state of the variable is

what is p hat. And then my Euclidean distance is just going to be a scalar quantity over

there.

Now, this would bring me to a point where I can have one unified matrix for measuring

what is the total performance or what is the total amount of error the whole system mix

and that is quite good because now I have a scalar matrix in order to do it and that is

what we were doing. So, these errors over here for us in classification you could do a

negative log likelihood, you could do a binary cross entropy. And in case of regression,

you could do a mean square error you could do a l 1 norm over there. So, there were

multiple  ways  of  it  which  we  were  doing  over  there.  Now,  nonetheless  the  only

imposition, which was imposed is that in some way the function error over there needs to

be differentiable. And as well as for the whole network to sustain over there you also

need to have the transfer functions and then network all of these relations as well as

differentiable.

(Refer Slide Time: 10:01)

Now that brings us to the point of error backpropagation. Now, typically what we have

during  back  error  propagation  is  we  would  be  following  this  standard  error  back



propagation  rule  in  which  the  future  state  of  my  weight  W of  k  plus  1  is  what  is

dependent on the previous state of my weights over there, and then you subtract this

extra part of it which is the error. Now, this error is something which is derived from the

gradient of the cost function with respect to the weights which are coming down. And

since the cost function is scalar quantity, but the weight being tensor over here,  this

derivative over here also turns out to be a tensor.

Now, how it comes down as it you have your number of samples given down to you. So,

say your training set over here has x number of samples, now within a current epoch, so

within any given epoch k, when your weights are at a certain value. So, when k is equal

to 0, you would initially stand down with p oddly some random values of weights over

there. And now with those random values of weights, whenever you set an input of x 1.

So, x 1 over here is no more one input from a sensor, but then this is just one timestamp

or one instance or sample of those set of inputs coming down.

So, x is a tensor. You see that written in bold. x 1 is first sample, x 2 is the second

sample, x 3 is the third sample and this is how it goes down. Now, all these p, p 1, p 2, p

3 these are all the predictions which come down which are expected to be coming down;

however, p 1 hat, p 2 hat p 3 hat these are the exact predictions which you get out of your

neural network. And now based on these true classes or say the true value if we are

solving a regression problem a true class if you are solving a classification problem you

can actually use this. So, let us look into just the pure regression form of here, which is

trying to do a l 2 norm minimization or Euclidean distance minimization.

So, this is how you get your Euclidean distance and the whole objective is that I want to

have this weight, particular combination of weight where my sum of Euclidean distances

over all the possible combinations of weights is minimum that is ideally what I would

like to have. And that can be achieved by using this kind of a gradient descent learning

rule. Now, that was my very simple plain gain definition of it.
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Now, based on that  what we have realised is  that  we can now formulate  this  whole

learning mechanism in terms of something called as a gradient descent learning rule. In

which what comes down is that you would start with one of these assumptions on the

weight over there; and then based on that you get down your J W which is the error and

then based on that you can get down your del del W or J W or the derivative of the cost.

And then using that you can update it can get down W of k plus 1.

So, you start with the first epoch, you get an estimate of the second epoch, you replace

that. Now, with that estimate, you get an estimate of the third epoch, and you keep on

replacing. And then subsequently what you could see is that as you keep on replacing

and then it keeps on going. Since, this derivative has to be minimized you would see that

this error also over here sorry since this error has to minimize by solving it out, so you

see that this error would keep on going subsequently down that is what is happening if I

am trying to look across epochs over here.
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Now, the point is that if I try to visualize it on a 2D space as we were trying to do earlier

and say that there were just two different weights over there w 1 and w 2 and such that

this w 1 and w 2 can vary over a large range. Now, what would happen down is that you

would start with some random value over here. Now, once you start with a random value

you have a particular value of the cost function random value of w 1 and w 2 are the

weights over there. You have random value of the cost function coming down. Now,

based on that you have your error computed which is J W. Now, based on J W, you can

take a derivative of J W now using that you update you get the next estimate of w.

Now this next estimate of w is because the w or the weight over here has changed. So,

this has shifted over to some other point over here, so that sets my second epoch. Now, it

does not necessitate that at the subsequent epoch that your error has to always go down

now that is something you are trying to achieve, but it does not necessitate that it will

always go down.  Now, if  the  error is  a  convex function it  would always so convex

function is always like this kind of a slope where you have one minima point over there.

Now, if that is the condition then; obviously, it is going to come down; however, what we

see is that it keeps on changing. And then, these weights also keeps on changing and

subsequently what happens is that it comes down to a minima point.

And now if you had any mechanism in which you could like really play around with all

the possible values of w’s over here then you would get down that this J W would be



some sort of a surface over there. And this part of it if we are restricting our w’s within

this small part over here then obviously, this minima there is one unique minima point

over there and that is a cost function. However, if you are if you want to play around

with this whole part then that is not a convex function because there are multiple points

which have minima and maxima coming down? And sort of like all minima locations

over here are equivocal minima and that is what something creates a major challenge of

us.

However, with plain j and or the vanilla gradient descent the very simple mechanism is

that you start  with a point and then assume that there is a local minima or which is

absolute minima for you and that is somewhere in the neighbourhood. And I will be able

to come down to that position that is what we are trying to do.

(Refer Slide Time: 15:33)

Now, what we were essentially doing is that in order to solve all of this we wanted we

needed to do the gradient computation. And for that the whole idea was that if I have a

very simple perceptron model over here, such that I am predicting out only one value p

hat using three different inputs three different scalars x 1, x 2 and x 3 then this is what

this whole equation would break it down to. So, your del del W J would actually be

product of u partial derivatives because your J W is something that the cost over there the

cost function does not have w in itself. So, it just has the prediction over there. So, it is a

del del p of J W.



Next, is that the j prediction over here this p is dependent on this y over here in terms of

the non-linearity. So, that is the next part over it. And then finally, this y is dependent on

all of these w’s, so you have a del del W of y. Such that the first part is what is called as

the derivative of the cost function, the second part is called as the derivative of the non-

linear transfer function, and the third one is the derivative of the linear network. And you

need all the three derivatives to exist in order for the gradient to be computed.

(Refer Slide Time: 16:44)

Now, for the multi linear perceptron, the challenge was that here it was pretty simple,

you had one output and just a simple connection,  but then here you have subsequent

number of them. And you do not know what is the state as the output of each of these. If

you knew what is the ground state or what is the ideal expected value at the output of

each of these hidden layers, then it becomes easy because then you can optimize one

layer at a time. However, this is not what you have you have it for the whole set coming

down over here. So, the idea over here is trying to break it down in a layer wise fashion

such that if for a dth layer, I am trying to compute out then I would be breaking it down

over there ad for there. And then finally, for the first layer I will get down my del del w

as x, and this is what we were doing.
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Now, on this whole thing, if you write it down cumulatively as one single update rule

then this is the gradient which comes down, where the first part is what is called as the

derivative cost function or the nable of j w. The next few bracketed parts over there is

what  belongs  to  the  derivative  of  the  non-linear  function  as  well  as  you  have  the

derivative of the perceptron at each layer coming down. And then this together is what is

called the derivative of the network or nabla net and then you have your input to the

network coming down over there. Now, this is what your whole gradient was looking

like.

(Refer Slide Time: 17:57)



Now, in my learning rule, what I was doing is that for any given epoch what I would do

is I have my weights available to me. So, I would do a forward of x and get down my

prediction over there, then I would compute my error, and then I would compute my

derivative  of  my  error.  Now, once  that  is  available  I  compute  the  derivative  of  the

network, and then I update my w. And this update goes down one-step at a time and that

is the reason why it is a back propagation. So, from output stage to the input stage, it

goes down. And then you get back to step number one and if until your error is below a

certain limit you just keep on updating this one. So, it keeps, it is an iterative process

which keeps on going over there.

Now, once it is over there you can end it out. Now, these were a few things on your codes

which  you were  doing down typically  in  terms  of  what  is  a  forward  backward  and

parameter update over there.

(Refer Slide Time: 18:49)

Now, the  point  is  we  wanted  to  get  into  what  were  these  different  kinds  of  back

propagation rules.
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So, one of these very famous one is what is called as an epoch update rule. So, over here

what happens is that you do a forward pass and then you keep on accumulating all the

errors and then in one shot you just update the weight over there. So, typically what you

have is say I have a number of samples in my training sets such that within any given

epoch I am going to take down these n number of samples as my input over there. Now,

for so that that is a pretty straight forward because you will do one sample one sample at

a time and then you keep getting all of this. And then you get down your basic amount of

errors. So, this error is what you compute at the kth epoch. So, if my weight at the kth

epoch is W k then I get my J of W k. So, I just chose to remodify these variables a bit and

write.

Now, when I am computing my nabla of J of W k, which is the derivative of j of W k

then that is what is corresponding to each of these samples x n. So, for each x n, I will

get  down one-one derivative  ok.  Next  for  my network  also  because  for  each single

sample input over there, there is a different value of my derivative coming down, so I

keep each of them. Now, the point is when I want to do a weight update in an epoch, so I

can just do it only once I cannot do it for each sample because that that just defies my

whole constant. So, what I need to do is somehow I need to map down this complete

amount  of  derivative  onto  something  coming.  Now, the  point  is  earlier  one  we had

looked that my del del W of J W is something equal to nabla of J W into nabla of net into



x n right. So, derivative of my cost function into derivative of my network into my actual

input which was given down over there.

Now, since  here  I  have  these  computed  for  each  sample  over  there,  what  I  would

technically do is I will take an average over all  of them. So, my simple point is my

derivative of the cost function over the weight space at a given epoch is an ensemble or

is an average over all the possibilities which were there at each of these samples. So, for

some of the samples, it might be a zero gradient that is for some of the samples is a very

high gradient, but I take this average value over there and solve my purpose. Now, that

makes it easier because my update rule is pretty simple that I need to update it only once.

So, these are what will get calculated for every sample which goes into it, but then I keep

all of these values stored down, I take a average over all the values and then I do one

update at a time, so that is pretty simple straight forward going down over there. Now,

that is what is called as an epoch update rule.

Now, comes the challenge. Now, say that I give you a dataset which is about 100 GB in

size. Now, for most of your systems, you will not have 100 GB of RAMs available to

you. Now, the only option is that you keep on storing all of this as a swap file into your

swap partition if you window system the; you would be doing a paging over there and

just  storing  it  as  a  page.  Now,  hard  drives  ios  are  what  are  too  time  consuming

theoretically it looks pretty good I mean I have hard drive over there on which I can do,

but then the data storage dates are a few hundred times slower than the data storage rates

and acquire rates on a standard RAM. Now, that is the challenge that is the challenge

which we have over here, and which is what got solved out with the batch update rule

quite easily.
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Now, in a batch update rule what happens is that say that I am given down this n number

of samples over here, and this n is something in the order of a few billion such that this is

something say tens of billions and then your dataset is quite above 100 GB. Now, instead

of taking all the samples together, what I would do is I would group it down. So, I would

say over here I take just two samples. I can take multiple samples over there as well. So,

typically like 100 samples, 16 samples, it depends on how much goes onto your memory

and what your system can combine over there.

Now, for a given batch of samples or given small group of samples within an epoch,

what I would do is I would find out these parameters over there. Now, this k is no more

called as a epoch parameter when you are doing a batch update, but this is more of a

batch iterative number. So, you can have multiple number of batches within an epoch.

So, this k will be varying based on that. Now, in the next epoch this k would be a k plus

1 like that. So, what essentially means is that within every epoch, you will do multiple

number of times.

Now, take a very simple example that say you have 1000 sample points over there. So, n

is equal to 1000, and then your batch size is 10. So, you will get down basically 100 such

small  batches of 10,  10 samples each which means that  within an epoch. If you are

solving  these  equations  then  you  are  solving  it  100  times,  now  obviously,  it  is

computationally more expensive than the earlier mechanism of one single shot update of



an  epoch  because  there  it  was  updating  only  once  anyways  these  gradients  and

everything is what you are computing down per sample case so that that computation

remains constant. However, here what it was happening is over there you were doing it

only once here you are going to do it hundred times. Now, that is a change which comes

in because these weights are not a small number, they are a large matrix which you have

to keep on modifying.

The next  challenge which comes down is  when you have this  kind of a total  epoch

update rule, the major problem is that you will have to keep on storing all of these and

you will have to load all the data in one single shot. Now, that is not something which is

feasible. Now, for that reason we have this batch update rule, which is quite a useful one.

Now, down the line when I enter into the optimizations and come down to stochastic

gradient  descent  I  would show you why batch update is  quite  good and what  is  the

coolest thing which they use within a batch update in stochatstic gradient descent. So,

this is what happens for the first batch.

(Refer Slide Time: 24:50)

Next once that is done, so with the weights which was updated in the previous, one you

would again compute and get this one for the second batch and then you solve it out. And

then you keep on doing and so on and so forth such that you end up the last batch and

then this is how it keeps on going. So, here it is no more called as a batch and a epoch,

but more of these k is what is called as the iteration factor. And there are crazy different



ways, so some people what they do is they keep on sub sampling and taking multiple

iterate’s as well, so that that is also an interesting way of doing it out.

(Refer Slide Time: 25:18)

The next one is what is called as the per sample update rule or also a sample update rule.

Now, this is something similar to the vanilla gradient descent in which what you try to do

is that for every single sample, you will be updating. Now, the example comes down

pretty simple, and you can actually look into your batch update rule and from there find

out like how it works out. So, the idea is that if your batch size becomes one, so what

you  essentially  have  is  one  single  sample  going  through  it.  Now, that  is  what  we

essentially do. So, you pass down one single sample now for this sample you compute

out your factors over there.

Now, if you look over here what I did is I have changed this iterator factor to n k now

because n is the sample number over there, and k is the number of epochs on which you

are going down. So, it makes it easier for me to map it. However, now since it is just for

one sample, so you do not need to have an estimator running to get it down, so that is the

change which comes down over here and then you have an update. Now, you do it for the

first sample, you have the weight updated, now you do it. So, this is when the backprop

happens, and the weight update goes down, then you do it for the second sample, you do

a forward pass, you compute all of your parameters over here, then you get your gradient



and then you do a weight update. Now, once that is over you repeat the same thing for

the third and then you keep on doing and so on and so forth till you reach the last sample.

Now, what you would realise over here is it is a good way because you are doing more

number of updates. And in fact, what you would realize is that if you are plotting it down

in terms of a number of epochs taken down, then in the next lecture where we do the labs

you would realize that it would take you less number of epochs really less number of

epochs to do it. However, each epoch is going to be very time consuming. So, the total

time consumed way if you look into it you would find out that this is not something that

is economically feasible to do. Now, I leave that part to the next lecture where I would be

showing it with an exercise, we will be solving the same network optimization using

three  different  ways  and  then  find  out  like  which  is  something  which  is  suggested

typically to do. So, I will leave that as an interesting point for the next lecture; now,

having said that these were the different kind of update mechanisms.

(Refer Slide Time: 27:25)

The next point which you have is trying to choose an optimization technique. Now, over

here one very popular one is what is called as a gradient descent technique.
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So, I will show you one epoch, so just between two epochs what is the difference which

comes down. So, I will start with the plain simple batch mechanism of update. So, see

when batch number becomes one, it basically boils down to the per sample update and

that is something which is similar to the exact vanilla gradient descent. So, there is no

change over there. Now, for stochastic gradient descent, you will either have to use a

batch or you will have to have an epoch, but then for epoch it also it does not make a

change. When we go through this, batching thing you will realise why it does not change

for the epoch.

Now, over here in stochastic gradient descent what we typically do is that you have your

training sample. So, you find out one of the batches over here. So, if this is your batch

then for one of these batches this is the set of equations which you will be solving out.

And then you keep on repeating over the different batches; for the second batch, you

again have this one and then this is what is solved down and you end up coming to the

last batch. So, this is (Refer Time: 28:29) for my first epoch what I have done great.

Now, the point is in my standard batching technique whatever I was telling is you will

keep on doing the same thing. So, again in the next time, you will get your x 1 and x 2 in

your batch and then x 3 and x 4 in your batch and then subsequently x minus one and x

of n in your batch and do it, but then in stochastic gradient this is not what we do. So,

what we do is within every epoch we would randomize the samples over there. Such that



say in the second epoch you have a different kind of a batch formation. So, you take the

first sample, you put it down in the second. The second sample now enters in the third

position and then the third sample enters into the second position such that your first

batch now in the second epoch is something which is made out of x 1 and x 3. So, the

first sample and the third sample, no more the first and the second sample.

Now, what this would change is that because of this change over here, so obviously, the

nature of these expectations as well changes, and that is the reason why you get down a

good amount of variance by just twindling out the samples. So, this will reduce any kind

of a local lock in condition. So, sometimes it might happen that two or three samples

always whenever they come down in a pair or certain way then this expectation over

there. So, individually one might have a positive gradient, another might have negative

gradient, but both of the same magnitude. So, this expectation would end up becoming

zero and essentially there is no update going down.

Whereas, the total error over there is usually high it was just because of this expectation

over there or the average value that the total error was coming down as 0, and there was

no update happening over there. But when the moment you keep on changing this per

epoch, so maybe in the next epoch it just shuffles out and just because of that shuffle

though the weight was not updated in the earlier case, but now because of that shuffling

you have a higher error coming in and that is what will reduce this lock in. So, this

randomization is what is present in a stochastic gradient descent.

So, the stochastic gradient comes from the concept that instead of estimating the ideal

value or the absolute value of the gradient in one epoch, we are just estimating it in terms

of a fixed number of samples in that epoch and that number of samples is what is called

within the batch that is the only difference. Now, this one great way of reducing local

lock in conditions; however, there is another very powerful mechanism, which is called

as adaptive momentum technique.



(Refer Slide Time: 30:59)

Now, what happens within an adaptive momentum technique is something of this sort.

So, in an Adam, you change the set of equations over there totally, the weight update no

more looks the same way. You make use of two different quantities, one is called as the

momentum,  the  second  is  called  as  the  velocity.  Now,  let  us  look  into  how  this

momentum is defined. So, you have one variable which is called as m and this is also a

tensor. Now, we will get down to why this exactly is a tensor. In general, because you

have this derivative coming down, so obviously, this is a tensor and anything derived on

top of it is a tensor.

Now, what I would do is I would start with some random value of momentum at pi zero

at epoch and then keep on following this update rule in order to keep on updating. So, at

my next one, I will have this updated over here. Now, this is what would come down as a

update mechanism on the momentum. Now, my del del W of j W is the same. So, if I am

doing a standard say a batch wise mechanism over there then this is what will come

down and in fact in your adaptive momentum as well your shuffling of samples between

epochs for creating batches is also pretty much valued.

Now,  once  I  have  my  momentum  coming  down,  I  find  out  an  estimator  of  this

momentum which is called as m hat at any particular given epoch key epoch or batch

whatever you can call it down. Now, this beta one which is one of this relaxation factors,

there  are  two ways  of  it  either  you can  have  a  very  static  beta  one  which  is  more



preferred practice, but you can also have a beta one which is varying over epoch, so that

can also be put into place. But for most of the practical implementations we have beta

one which is a constant value.

Now, similarly you find out the second quantity which is called as the velocity v that is

velocity  is  something  which  is  dependent  on  the  second order  of  the  square  of  the

derivative  over  there.  So,  this  is  not  the  second  derivative,  but  it  is  square  of  the

derivative a much sharper function. So, you have one which is depending just on the

derivative, and the other one which is dependent on the square of the derivative. And

then similarly you come down to an estimate or normalized estimator as well for v; and

then finally, my update is something which is defined as over here. So, in the earlier

case, you just had a eta times of del del W of j W, but here I take then whole ratio

between these two.

Now, the whole point of getting down a square root over here is basically because this is

a squared order this is not in the same order as that of del del W of J W. So, for that

reason we just take a square root over this one and then this is what comes down and

constitutes a very simple mechanism called as Adam. Now, this epsilon is also a constant

number, which is typically given down such that this denominator does not become zero;

or else otherwise if there is a chance that v can become down zero. So, b can become

zero at any given point of time. And then if say this is 0, and then oh sorry this would be

v this is not m, and this v value over here also would become 0, then comes down the

problems. So, we do not just want to make that as an issue and for that reason we put

down this extra epsilon offset over here.

Now,  these  are  typical  ways  in  which  you  can  do  different  learning  rules  and

optimization techniques and that is what so stay tuned onto for the next lecture, where

we do a hands on with this whole thing, and then you can keep on enjoying further based

on that.

With that, thanks.


