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So,  welcome  and now today, we would  be  doing one exercise, which  is  on  Sparse

Autoencoders and while in the last lecture, I have explained you exactly where and how

Sparse Autoencoders come to place. So, while we are doing this particular exercise using

the MNIST digits classification problem, you would be exposed on to how to incorporate

Sparsity within your code and then how does this have a subsequent down role to play

down.

So,  you clearly  remember, when we were doing down our  earlier  lecture  on  Sparse

Autoencoder. So, there was L1 norm, which was introduced over there or what was also

called as a L1 penalty loss and then that is basically to find out the total number of zeros,

which are present down and then just do some sort of a kl divergence between the total

number of zeros present and the total actual desired number of zeros to come down. So,

that was a extra loss, which we were adding down as an extra amount of error to the

whole system and the whole objective was that till we come down to the point where we

desired to have. We actually have that many number of 0s within the weight matrices as

we would desire to have over there. This error is still going to be a higher value and then

it would come down.

So, technically, if I desired that 30 percent of my weights over there are completely 0s

and if it is not up to that level, then it has a higher error and on the other side of it say, I

desired that it is 30 percent of them are 0s, but then 80 percent of my weights turn over 0.

So, that's mean that I have a system which is learning to be heavily redundant, but I do

not want the system to be that rate on it. So, I can actually, because of a positive error

coming down, because of that k l  divergence function over there you would see this

metric actually coming to a point, where it would come down to that 30 percent point

over there.

So, that is a typical example, which we will be doing; however, given one thing in mind

that we have just looked into one kind of our cost function, one kind of a loss function



and not these two kinds of different loss functions. So, how to incorporate that within

your network and whether that has any changes in the forward pass and in the backward

pass is, what we will be doing today.
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So, starting from the first  part  which is quite simple and just on loading down your

libraries and then eventually coming down to you are loading down the data. So, we are

using  the  same  architecture  and  same  kind  of  a  notion  as  in  any  of  our  earlier

experiments  with  MNIST. So,  you  have  60,000 training  samples  and 10,000 testing



samples and what we are doing is, we call up the data set from our torch vision data, sets

point  and  the  advantage  which  we  get  down  is  that  I  have  already  downloaded

everything and kept it over there.

So, with iterative runs I do not need to. So, if you are not doing a refresh clone or not just

deleting the older archive, wherever it is, put down and then putting down the newer one,

then you know that pretty much everything is over there. So, your data sets are also

preserved and at this point of thing one suggestion which I would give, is that you can

keep on downloading newer assignments as they keep on coming, on the jit link over

here, but then please do not delete the older folders over that in which your earlier data

sets  were  kept, otherwise  every  time  you  do  a  run  and  if  your  data  set  folder  is

completely deleted then you would see this whole messing up. So, one simple thing is

that always JIT clone onto the same location.

So, you know that it is always refreshed by the newer version of files, which have come

down from the JIT repository and if you have made some modifications and kept it then

please make a copy on your separate  JIT account and upload and keep it for your own

purposes and do not disturb the main repository, which is downloaded and kept on. So,

here we start with the same way of you, having for workers in parallel loading down in

batch sizes of 1000 samples. 
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So, that goes out and then I have my GPU availability, check over here which checks out

my GPU is available. 

(Refer Slide Time: 04:13)

So, I can actually use my best way of accelerating out my codes. Now, we start with

defining what comes down as a sparse auto encoder.

(Refer Slide Time: 04:27)

Now, you see two different parts over there, one is that I initially start by defining a

newer kind of a class and this class of this particular class, which I define over here is

what is called as a L1 penalty. Now, it becomes a bit confusing at this point of time to a



lot of people, but let us keep it simple and do it. So, here the whole point was that while I

am actually  doing this  autoencoder. So, where is  the first  time, where you would be

looking into your sparsity.

So, you had say some 784 neurons, which were connected down to 400 neurons and you

just had these 400 neurons, again mapping back to 784 neurons and this was the simple

auto encoder, which you were creating. Now, I would like to add down sparsity at the

end  of  this  first  layer  or  which  will  look  into  the  sparsity  of  the  weights  in  my

connections from the first hidden layer to my output, which is being created over there,

great and the whole objective is that these layers will be my connections from my hidden

layer to my output layer, will be sparse only if there is a over complete representation

present in my earlier layer, which is for my input to my hidden layer.

This has to be there, otherwise we cannot ensure sparsity in any way and it goes around

the web in order to ensure sparsity, you will have an over complete representation and

you will, whenever you have an over complete representation you will have a sparsity.

So, this has to go hand in hand, with the learning paradigm over there. Now, comes the

two different aspects of it. So, one is that I would need to define, what is on my forward

pass? So, in my forward pass, what I am trying to get down is basically, I find out that

the total number of weights, which have a value of closer to 0.

This is what I just find it out whereas, when I do my reverse pass or my back propagation

then I do not want any of these to have any impact and changes, while I need to keep one

thing in mind that these parts autoencoders. They would ensured that, you keep on like

wherever  it  becomes  a  0, then  that  0  is  stored  over  there  and you, while  in  back

propagation you also have the same thing in that.
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So, here what I would do is, that in my back propagation, I need to have some sort of a

memory to remember down my exact number of elements, within the weights which

were 0 and that comes down from this cloning based, on a sign operator.

So, whether it was a 0 valued thing or something closer to a 0 value thing or whether it

was a non zero value of thing. So, these are two things which I have to explicitly define

into something called as an L1 penalty function. Now, once that is defined. So, first I will

have to execute this particular part of my L1 penalty function over there that is executed

then I come down to my auto encoder definition.
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So, my auto encoder was that I had 784 neurons connected down to 400 neurons and 400

neurons to 784 neurons on my decoder set.

(Refer Slide Time: 07:32)

Now, comes my forward pass of the auto encoder. So, what I do, is I have my first

forward pass, which is from my 784 neurons, whatever is my input they go down to 400

neurons. Now, at 400 neurons, I will be putting out my sparsity for the first time. So, and

I want to have a sparsity in position of 0.1 or 10 percent of my weights are supposed to

be 0 that is  by definition what I am saying down over here. Now, this L1 penalty is



basically, a function, which has been defined in this earlier case over here and I have

defined both my forward and my backward definitions  for this  particular  new layer,

which we are proposing for the first thing.
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So, you can actually use this as a standard definition for proposing any newer kind of a

layer  architecture  as  well.  So,  maybe  you  come  up  with  your  own  neural  layer

architectures  at  any  point  of  time  and  you  can  actually  use  a  separate  function  for

defining that, we do the same thing in order to do this L1 penalty loss over here and then,

whatever is the output which comes down over here, which is now sparse in some sense

and you have a decoder through which it goes down. Next, I can just  print my auto

encoder. And then if I have GPU available, I would just be using GPU to do it.
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Now, from there what I do is I use two temporary variables and these are basically, to

copy down my weights, the whole rationale for copying down these two weights are like

before I start my whole training process. I would actually like to see like how they are

initialized and how they look like and what happened after my training with this kind of

a sparsity coming now. So, let us run this part and. So, you print down your network

architecture. Now, if you look into your network architecture at no point of time, this L1s

penalty loss is coming down over here, because this is just a function, which has been

defined for the forward pass.

So, you do not have a modification over the architecture, but you are just modifying the

way your data would be passing in the forward pass of your network. 

(Refer Slide Time: 09:32)

Now, my next part is to go on and train this autoencoder. Now, based on our experience

we did see that over 20 iterations, it does run out. Now, again from our prior experiences

with the earlier examples, which were doing it, does take a significant amount of time to

finish  it  out.  So,  a  few  seconds, I  will  just  set  this  running, while  I  actually  start

explaining you, what goes down over here.

So, we decided to go with 20 epochs of learning and a learning rate of 0.98 and since I

am training just a simple autoencoder architecture over here, which is just trying to find

out the reconstruction loss and trying to minimize it; so, my criterion, my loss function

over here becomes MSE loss function. 
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Now, what I do over here is that, I would like to have like these data points over there

also stored for my like a later on point of viewing over there.

(Refer Slide Time: 10:28)

Now, what I start from that is, I will start my training, will just be something loop which

keeps on rotating over the iterating over the number of epochs and that is  my epochs

counter, which is running down . So, now, as in with the earlier case, if you have a GPU

then we convert it onto a GPU variable, a cuda variable which sends it over to the GPU,

otherwise you just still have it residing on the C P U, then you do a 0 of all the residual



gradients present down over there and then comes down the first part, which is a forward

passing.

So, there is one forward pass of the whole batch in one single epoch, after that what I do

is, I  find out what is  the loss function.  So, using my criterion  which is  a  MSE loss

function and this is just the difference between the input and output, because I was just

trying  to  reconstruct  whatever  was  given  as  input  over  there. Now, I  need  to  do  a

backward or the derivative of my loss del a nabla of my loss function, a nabla of j and

here, I get my derivative of the loss coming down and then is my vanilla gradient descent

or the simple strain plain method of gradient descent, which I am using if you remember

from my last lecture, where I was explaining you the theory of Sparse Autoencoders, you

do not have any specific kind of a change coming down in terms of your learning rule.

So, the only thing is that we add a certain term onto the cost function and how it gets

added  is, because  you have  this  forward  pass  and  the  backward  pass  both  of  them

defined and in the backward pass is where I am adding this extra part on the gradient

over there and nothing more. So, what this introduces necessarily is that my gradient is

what comes down from the backward operator over the criterion function and backward

operator over the network. Now, that I have my gradient of my input available, I would

just be adding this extra gradient, which is the loss computed in case of when I have my

sparsity incorporated over there. So, that is just the addition of the loss, which I do over

there and that is what includes my equations, whatever we had done over there .
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Now, from there what I do over here is that, this is just a simple trick to display down

your outputs after a certain given point of time and then nothing beyond it. 

(Refer Slide Time: 12:49)

So, let us just see how it has gone down. So, it was good that you did finish training the

whole thing and over with 20 epochs we have somewhere achieved a loss of 0.058.
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Now, if  you  remember  in  your  earlier  MNIST case  with  training  epochs, you  were

coming down to somewhere around 0.61, if I clearly remember whereas, here with using

a sparsity.

We have not been able to come down to that level, but after 20 epochs, we did go down

and clearly from the earlier example where you had two different data set which are of

the same empirical size in terms of the number of pixels and almost in the same dynamic

range of gray values, you also did recall that it is  not necessary that you would come

down to the same error limits for both of them. So, here also it is something of the same

sort. Now, here what I try to do is basically, in order to look down into what is the

performance of my auto encoder over here, I would just like to check out
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So, let us look into the performance of the autoencoder. So, initially when it was trained

on like at the start of the training, which is the  zeroth epoch. So, you have all rates,

which are randomized and taken down from some sort of a  Gaussian distribution and

plot it down over there. So, with that if this is my input.

(Refer Slide Time: 14:03)

Then this  is  something which comes down as  my output  over  there and you cannot

necessarily make out anything out of it whereas, after training, this is something which I

get it comes down as if a consolidated blob, not necessarily. So, noisy it is a blob which



comes  out, it  looks like  a  mixture  of  maybe 7398, a  lot  of  things  and some decent

probability around being a 7.

So, provided that you are training it for really longer period of time or you are using

some different kind of training method, instead of the gradient descent, you use some of

the other optimization techniques, which I deleted on point of time, when we would be

using. We study about them, you will be knowing that using some other techniques, it

might come down to a better point, but as of now let us freeze at this point. So, this

comes  down  one  where  you  have  achieved  some  sort  of  fidelity  in  the  whole

reconstruction. Now, I would like to look into my visualization of these weights.

Now, you remember that what we had done earlier, somewhere over here is we had

actually copied down all the weights, while the network was defined and these are all the

random initializations, which my network gets randomly initialized. So, I actually bring

those weights  over  here, one is  I  can have my trained weights, which  I  can extract

actually after the training over there and then I have my initialized initialization weights,

which were before the whole process were started that is what is given down over there.

Now, when I write down this capital E that is actually the weights of the encoder, when I

write down those as d then that is weights on the decoder, which comes down. So, here

let us look into these initial weights.
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So, now, this is what it was like at the start of the whole problem and you remember that

you  had  28 cross  28, which  were  connected  down  to  400 neurons  over  there.  So,

technically; that means, that I have 28 cross 28 or 700 and 784 weights, which connect

down to 1 single neuron and this is that 28 cross 28 weight matrix, which you see and

typically you like, if you look across the spacings.

So, you have such 20 cross 20 tiles and you can just count it 1 2 3 4 5 6 7 8 9 10 11 12 13

14 15 16 17 18 19 20 such ones and on this side also you have 20 over there. So, in total

that should be 400 such small tiles present over there.

(Refer Slide Time: 16:31)

Now, once the whole training is process, training process is over, after 20 iterations over,

there this is what these weights start looking like.
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And one thing what you can see is that they have changed not necessarily, that they have

come down to a convergent point or something.

(Refer Slide Time: 16:50)

But there has been subtle changes coming down and some of them look like as if they are

taking structures like 0 1 7 something over here, something rough. So, provided you train

them over a really long period of time maybe, set it down for 200 epochs and go and

have your cup of coffee, tea or finish off your dinner, lunch, whatever you are doing and



then come back in 30 minutes or. So, in most of your systems, it would be trained on for

200 epochs by then.

So, deep learning does not take that much of time as a lot of people are scared about it.

So, then you would be able to actually see down the changes, which come down the next

part. What we looked into is; what is the actual way of weights updates, which have

happened. Now, this is a very crucial point, because what we have done over here is just

subtracted the original random weights from the current version of the weights are after

training and these indicates those particular  locations, where there has been changes.

Now, if you look into this changes over here, these changes are something where you

would be able to see down numbers.

Now, typically  most  of  the  updates  have  been in  the  center  region and that is  quite

obvious, because whatever images of these numbers 100 and digits, you had, they had

most of these actual line pandas, which were at the center point, they were not located at

corner places or anywhere and that was the reason why you did not have any updates

coming down in the corner, but most of the updates were from the center region also.

You see that they are somehow congruent to the numbers where it was trying to come

down and this is the first belief that if you are training it down over a longer period of

time. So, this would keep on converging over and over again, this would be the sort of a

guidance principle of how the weights are getting updated and eventually the final thing

would start looking something like this where each of these bits are tuned down to a

particular number.

So, this is what I leave on to you guys to do out of your own interest. So, this is about

how all of these things are connected from my encoder to decoder.
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This is one part of it, the next part is to look into the weight visualization for my decoder

and that is where my this capital D comes from. So, all my weights from the decoder. So,

initially I had already stored down my weights from the decoder.

(Refer Slide Time: 18:52)

So, that was something, if we go up over here, when I had defined it. So, I have my

weights of the decoder as well  which I had stored it  down and then after my whole

training is over, I again pull out those decoder weights from my network.



Now, my whole objective is to repeat  the same thing and then start  looking into the

decoder weights as well now, this is something which is present on the initial part of it

and clearly if you look into these patches. So, I have 784 neurons which were connected

to 400 neurons in my encoder. Now, I have 400 neurons in my encoder as output of my

encoder, which I connected down to 784 neurons on my decoder.

So, now what I would have, is that there is a small matrix of 20 cross 20 or 400 bits. So,

that is, this small matrix over here and then since I am connecting it to seven eighty four.

So, that should be 784 such small patches or matrices of weights. So, it is a 28 cross 28

array, which should be there, let us just count it 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

18 19 20 21 22 23 24 25 26 27 28 and countdown on the vertical direction, you would

see such 28 tiles again.

Now, over here is where I see my weights, which are after my training. Now, it does not

look much of a difference, technically saying like most of you would say it is as noisy as

it was in the earlier case as well, yes it is  noisy, but then the intensity of the noise has

somewhat decreased. One thing you need to keep in mind is you remember that these

gray values, what we had seen in the earlier, cases also I was explaining that they are

what are  zero values and all the blacks are negative values, all the whites are positive

values which are other and this is normalized into it is dynamic range and that is why.

We do not have that, this is just for visualization purpose, you cannot technically infer

out on the values just looking over here and then if you look into these weight updates

over there you do not necessarily see to, I tend to see any patterns, there are some wavy

things and some really discreet way; however, there is one interesting point, which you

need to look into over here, when you see in this one most of the values were either

highly negative and highly positive, here a majority of these values tend to become down

as zeros and that is the point of this L1 sparsity, which comes down.

Because now, that you have all of these gray values, which you see they are zero value

numbers, which comes from and this is something which gets imposed from here, while

you had just high positive and high negative values to hear. When majority of the values

are actually  zero valued on the weight matrix over there. So, this whole thing comes

down, because  you  have  an  L1  penalty, you  had  imposed  over  there  and  that  was

possible, because a lot of these weights you see over here, they look similar to each



other, say this weight looks very similar to this weight. It looks pretty similar to this

weight, it looks pretty similar this weight, it looks pretty similar to these weights. Now,

the moment is you will be able to get down whereas, this way it looks very dissimilar.

So, you will have very less number of such unique weights, which are available and then

since whatever you are doing over here, is just a combination of weighted summation of

the outputs, coming down from one of these layers. Now, most of these neurons, they

would actually have a similar kind of an output, which comes down and you can pretty

much do away with most of the neurons and keep done 1 or 2 neurons over there and still

get an output coming down and that was the reason the whole rationale, why over here?

Do you see a lot of these bits, actually go down to a zero value and that is really helpful

in case of dealing with sparsity.

Now, you would see that the weight updates, which happen over here, they are also quite

near to zero value, but there are certain high and low changes coming down, because you

had to bring down those high positive and high negative values on to quite closer down

to actual zero values coming out. So, that was all about these visualizations and finally,

what we do over here is the simple old trick, which was I have trained down my whole

encoder with L1 sparsity over there and now, I would like to modify this autoencoder, in

order to form a classifier. So, what I need to do is I necessarily need to remove out my

last decoder layer and then add my classifier module which connects from 400 neurons

to 10 neurons.
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And then I can start my classification trainer and this classification trainer over here,

trains over this standard 10 iterations, using negative log likelihood loss function, as we

had done in the earlier case. So, let us just set this running over here. 

(Refer Slide Time: 23:28)

Now as  I  see over here, you would see that  it  starts  with a  starting accuracy of  78

percent. Now, if this is, if you remember it from the earlier one, this is really high those

earlier case, we started somewhere around 66 percent on the starting accuracy whereas,



here  we  have  started  down with  a  starting  accuracy  itself  of  78 percent. Now, one

question you might ask is why is it? So, why did we start with a higher accuracy?
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One thing you need to keep in mind is that these kind of networks,  the moment we

started  introducing this  sparsity, there  was one thing  in  order  for  the  network  to  be

sparse. You need the earlier  part  before sparsity  to be over, complete, otherwise the

network  cannot  be  sparse. Now the  moment  you  are  having, an  over  complete

representation. In the earlier case, you see that you tend to have similar representations

grouped down. So, you are now coming down to dominant group of representations and;

that means, that the noisy representations are getting ruled out in the whole process.

So, as we keep on getting noisy representations ruled out, which means that features

which are really irrelevant to this particular problem of classification. They do not come

into play and for that reason; we start with a very higher accuracy.
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However, the final accuracy is almost of the same plot. It does not change, because in the

earlier case, you had about 92 percent, we trained it over and over for 20 epochs or you

went down to 92 and here, you might not necessarily  get done, but you are starting

estimate, in this case is a much better estimate than you have in the earlier case without

having the sparsity.

(Refer Slide Time: 24:48).

So, if we look into each of these classes and how much they come down you still see that

for class 5, in the earlier case it was about 55 percent, accurate 85 percent accurate and



here we are barely 84.7, which is almost the same amount of accuracy there has not been

much  of  a  change;  however,  the  features  which  it  has  been  learning  over  here  are

something which are  more  congruent  to  be representative  of  the numbers  which  are

handwritten. So, with this we come to an end of lecture nineteen on our whole aspect of

trying to train down an actual autoencoder with sparse sparsity included over there.
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And with this concept we have shown you for the first time about how to actually start

defining your own kind of layers as well in including, if you want to just have some

customized cost functions coming down. So, in the next lecture we would be covering

down on top of this one which is to come down with the next aspect of a denoising

autoencoder and how does a denoising autoencoder help you to learn better weights as

well as really clean down the noise from any of these results. So, for then stay tuned and.

Thanks.


