
Deep Learning for Visual Computing
Prof. Debdoot Sheet

Department of Electrical Engineering
Indian Institute of Technology, Kharagpur

Lecture – 18
Sparse and Denoising Autoencoder

So, welcome and so, in the last class and the lab you had seen how to use down stacked

autoencoders and the idea was that if we have a large network and in order to get around

with the complexities with training down the weights and then the total complexity

associated with the dynamics of the free space of weights, then can we have a simple

way of doing it out. So, following that is something which is called as denoising and

sparse autoencoders and where this comes down to play is that denoising auto encoder as

the name suggests is that it can have a major use in terms of denoising or removing out

noise from matches or examples over there and smart autoencoders are where you would

be making use of sparsity theory.

Now, these two are very important in two different aspects; one is, in order to prevent

something which is called as memorizing of examples by a network or an over fitting

scenario in which what typically happens is the network would tend to learn examples

and memorize them instead of trying to learn down patterns it would be memorizing the

examples itself, so within an autoencoder since you your basic job is basically whatever

is the input you given you are supposed to predict down the same as the output over

there.

Now, you would try to make the network not memorize these things, but rather to

actually represent it in terms of features and that is the basic idea of learning even for

human learning I mean one way is that a lot of people just memorize and then they go

and just write down in an exam and then they forget it out, but that is not what is the

essence of even human education or human learning, societal learning is where you

would try to grab an essence and then develop your intellectual potential which is your

own neurons in your brain they are supposed to fire it down appropriately for anything

unseen, it should not be that whatever you have seen in the book anything which comes

down in your across your life which is very different from that that you will not be able

to solve it out.

So, that is that is exactly the same way which we try to do with these kind of deep neural

networks as well and that is where Denoising and sparsity within Auto encoders does

come to play. So, without reading much let us get into what I would be doing.

(Refer Slide Time: 02:32)

So, typically what it is arranged as I would be revising that first basic math of

Autoencoder once again and so the reason that I am going through them sort of a lot of

you will be getting down that I am just showing on the same set of equations and a lot of

those slides which look like repeaters, but the main reasoning is; so that you can actually

learn to relate this salient changes between what was earlier and what we are doing now.

So, this what happens from an Autoencoder when we go into a denoising Autoencoder

and what is the change which happens from going from a denoising Autoencoder to a

sparse Autoencoder and are there some ways of combining these denoising and sparse

factors together and also you need to keep in mind that actually all of these examples can

be extended down to your stacked Autoencoder.

So, it is not something like if you are stacking it down then you cannot use these kinds of

different strategies because each is a different way of doing it, so stacking is a way of

geometrically building up the network where by using lesser and lesser number of

resources in order to create a much deeper and complicated network and denoising

Autoencoder is a way of basically training down the network and getting a way in which

you stop it from memorizing examples sparsity in autoencoders is trying to make down

redundancies in weights and imposed on some sort of redundancy and whatever it is

learning. So, each has a different objective and all of them can be combined very much

together.

So, at the end we will be looking into examples of stacks pass denoising autoencoders

basically taken down all of them together and what it goes down. So, in the subsequent

tutorials using coding which we will be doing we will be also touching upon all of these

examples. So, you will be seeing a repetition of what you had solved with autoencoders

and then brought down the stacking concept over there then also going over denoising

and sparsity criteria to find out whether that does work out in terms of your examples as

well and an incrementally we will also be seeing down what we gain by bringing all of

these concepts as well.

(Refer Slide Time: 04:33)

So, I will be getting started with a very simple auto encoder. So, what you had was that

say at a particular location x which is x comma y location within an image and you take

a small patch around that location and that is what is called as p of x now p of x is going

to be a set of pixels; which get arranged linearized and arranged over here, so for our 5

cross5 patch from gray scale image you have 25 pixels, for a 5 cross 5 patch from a

colour image and RGB colour image you would be having 75 pixels over here, you have

your bias connected over here and then so in some of my examples you might not be

seeing this node as one and then this bias connected, but always keep in mind that this is

an intrinsic factor, so if I have just a bus kind of one single arrow which connects some

input to my hidden layer always remember that it is nothing that it is a 0 bias network it

is a perfectly valid bias network. So, you have a bias connecting the these like that there

is always a bias in the connection to the input of the hidden layer as well and similarly it

goes from the hidden layer to the output over here as in this case. So, this is just one

single zone of an Autoencoder or as you had looked down in your stack autoencoder you

would remember that it is just with using one hidden layer, so you had W1 and W1 dash

which you were training them and then you could do something else. So, we will stick

down to only this hidden layer we are not looking into classification problem as such

currently.

So, a simple auto encoder is what can be defined mathematically of this form that the

output of say this hidden layer all the neurons over here is what is the tensor y and that is

basically, so this is not output of exactly this1 that there should be a nonlinearity as well,

but if we consider that nonlinearities 1thenif unit transfer nonlinearity then you can

pretty much have it represented in this one. Now, the result of this next layer is what will

be coming down into this 1 and in terms of w dashed and b dashed? Now, and your basic

learning rule is where you would like to have this particular cost function which is the

difference or the Euclidean norm between your p and p hat for nth number of samples and

summed over all the n number of sample these needs to be minimized and that is your

basic learning rule which are going to use within simple auto encoder.

Now, standing on top of that if I would like to go down with Denoising Autoencoder then

let us see what happens over there? So with a denoising Autoencoder the structure as

such remains the same you do not make any change within the structure, so that is what I

was saying; that, if you would like to do a denoising Autoencoder on top of a stacked

auto encoder so stacking is just a way of geometrically building up the network

denoising has nothing to do and a 0 relationship with any of those aspects of stacking

down, now for a stack or for Denoising Autoencoder what happens is, for a simple

Autoencoder while you will have this particular kind of a form, for a denoising

Autoencoder the difference is that you bring in this extra tensor over here which is called

as r and this is a nosier or a noisy parameter.

(Refer Slide Time: 07:06)

So, what we do typically is? That I would try to add down a noisy parameter along with

my input patch over there and this noise is what is randomly generated it is a stochastic

generated noise so within your learning framework within what you do is? Typically you

have a set of learning examples and then on within every book you iterate over all of

these set of learning examples over there. Now, whatever is the value of p for a given

sample number over there it is going to be the same across all the epochs, so there is no

going to be no change over there, but, now if I bring in a random nosier over here which

means this r is going to be a random number which is generated every time you are

trying to access some patch over there.

So, for the first epoch whatever is the value of r for a given sample; in the second epoch

the value of r is going to be different and according to that this p plus r this combination

is also going to be a different value which comes and that what it would mean is that

around the same sample you are going to draw a certain amount of slight perturbations

and these perturbations are what will be to the network what it stops the network from

doing is it will stop it from memorizing it because you are not going to see the same

written way of example every time, but you are going to get done some different way in

which it keeps on coming down.

Now, if you have a nonlinearity after that then this nonlinearity adds and this is the

typical form and on the output side what you would try to do is you will get down a p

hat, but here the output of this y or the first hidden neuron that does not get any noise

added to it, the noise is just added on the input side of it and then when I am trying to

look into the output over there my cost function will include just trying to find out the l 2

norm between p and p hat, so here I have no more going to put down p plus r. So, what

that necessarily means is; that I cannot keep my training data already pre corrupted on to

my data set.

So, every time I am trying to access a particular sample from the training data I will have

to introduce my corruption of the noise this random value exactly at that point of time I

cannot keep it pre corrupted at any point of time, now this is one part of my cost function

which is p and which is made out of p and p hat. Along with that, I also have another part

of my cost function so if you look into it all of these are equally weighted so this is 0.5

weight and this is 0.5 weight which means that there are two parts of a cost function and

i am weighing two parts of a cost function equal hopefully.

Now, this other part of it which is just an orthogonalization factor over here and which is

typically used for the factor so that I have maximum amount of dissimilarity between

neighbouring between the kernels which I am learning, so what w transpose plus and w

dashed transpose w would do is; that this would return me a square matrix over here

which is the same size as that of my number of neurons over there in my hidden layer

and then I try to try to take out a trace. Now, my objective is that I would try to minimize

this whole cost function so that would mean that I need to minimize this part of my cost

function as well as this part of my cost function.

Now, if I want to minimize this cost part of my cost function so that would mean that my

trace or the diagonal sum over there has to also be minimized and that means, that very

strong correlations at any point of time between kernels from one side to the other side

that has to be reduced or what typically would also mean is; that there has to be

minimum correlation between w and w dashed say one cannot be the inverse of the other,

so this will be maximum only when w and w dashed are inverse of each other that says

what comes down from the mathematics over there.

So, this together as a cost function does restrain me from memorizing samples and then

my total learning rule is what goes down according to this kind of a form that I would try

to minimize my cost function over all of these values of w and b’s together taken. Now,

this is what qualifies as a typical case of straightforward denoising Autoencoder.

(Refer Slide Time: 12:00)

Now, we did stay say that we would be touching upon another which is also called

sparsity, now for spicy tea what you do is? Let us say I have a simple Autoencoder which

can be modelled in this form and if I put down a nonlinearity then I have this extra

nonlinearities coming down, now in sparsity i do not so here I am assuming that this is

denoiser which is already added on to it so this is a noisy vector which is added and then

I am trying to predict out p hat says that this network can learn to be Denoising, but then

I would also want that; so this JW over here is what comes down from my previous case

of J W so in my earlier case on my denoising autoencoders whatever is my cost function

that is known as J W so I would be using this part of J W and I would bring it over here

in case of my sparsity as well, so this J W part is written plus I put down on another

factor beta times of this scale divergence of rho l, now this rho l is basically my sparsity

coefficient or this is the probability of getting anon 0 value in this weights over weight

matrices over there.

So, if I have W1and W1dashed over there. So, what typically means is? That all of these

are some sort of tensors or matrices over there a lot of those companies 0 and some of

them can be non0 so my probability of getting a non-sparse matrix over that is basically

the number of elements of this matrix which are non 0 divided by the total number of

elements on this matrix.

Now if I have a target that I want to have 20 percent of it as my target of non 0 values

and everything else has a 0 value then this scale divergence will be 1 when these two

probabilities are almost the same, now if this is likes way ahead of it. So, it might be a

very non sparse or a highly sparse, but in both the cases the distance will be large and it

will try to impose it to coming down to a particular sparsity level itself and as in over

here it is a 20 percent sparsity. Now what I do is? That I add this 1 on to my earlier cost

function and then create a new cost function which is called as J sparse and then my

learning algorithm is basically to minimize this J sparse over here through this learning

rule and that is what will impose a sparsity.

So, while in the earlier case we did look into that so that the inversion problem does not,

so that the memorization does not happen within the network we would try to keep w

and w dashed not as invert of each other and that can be achieved by your trace

summation over the trace part of it and then trying to minimize that a total matrix sum,

now the other part of it is which is where I would try to have most of these weights as

0’sand the advantage which you get down by putting most of these weights as 0’s is that

the dot product or multiplication product is going to be 0 and as the number of values

which you get through it are going to be very low valued not very high values which will

just saturate out your complete network.

The good thing on top of it is what we had done in the first class on autoencoders where I

was selling showing you a few of the classical example. So, in one case where the image

was looking very diverse and you had a lot of noisy and randomness features present

over there we did learn out and that was an OCT image we did learn out that it is not

necessary that a very noisy and randomly appearing image will have a lot many number

of unique kernels. So, you did find out less number of unique kernels and then in the

second layer there was a huge amount of sparsity.

So, we will be sure seeing revisiting that example once again over here as well and now

on the other side of it you did see that when you were looking at retinal images then over

there although the image appeared thin, but the amount of diversity was very high and

the system was not at all sparse, so this sort of a learning algorithm sparsity actually

imposes that and there are many more theoretical implications which we will seeing

down in the later on lectures as well.

(Refer Slide Time: 15:52)

So, let us start like just get a revision concept of that one so the earlier thing which we

had done with a standard MLP problem of a pixel classification was where I take down a

patch over here then train down to water encoders and here it is a denoising Autoencoder

and now that if I train it down by stacking one behind the other so you can very much

call this as a stacked denoising Autoencoder. So, your denoising criteria is applied and

now if I apply down the sparsity criteria as well then I can call this as a stacked

Denoising sparse Autoencoder and accordingly I take down a patch over here and then I

keep on moving it pixel by pixel and that will give me a raster movement and based on

that raster movement I would be getting done each pixel classification which is collated

to form this matrix of my classified tissue map coming down over here.

(Refer Slide Time: 16:43)

Now, where it goes down is that, my noisy factor is what is added down to my input over

here and even in my final training also I would be having that noisy part added and then

the final cost function after the auto encoder training is over is something which will no

more make use of other factors, but it will just be making use of this factor of l 2 norm

between my predicted class which is my tm and my actual class in my ground truth

which is omega m. So, that was a pretty straightforward thing which we had done in the

earlier one, but here we are just introducing the concept of sparsity Denoising as well as

the stacking way of learning it done with lesser number of weights.

(Refer Slide Time: 17:24)

Now, so let us get into this revision of that written digit recognition so remember that in

the last class we did say about this particular problem so this was about trying to

recognize hand written digits and that is a 10 class classification so you need to

understand which numeral is it from 0 to 9 and so you basically have 28 cross 28 pixel

sized patches over here and everything is integer valued 8 bit numeral though if they are

binary images which means that the gray area over here the background is 0 and

whatever is white is has a value of 255 and or training you have 60000 samples for

testing you have 10000 samples a very classical example.

(Refer Slide Time: 17:31).

Now, if i try to train this network without adding any kind of a noise then on my first

layer if I try to visualize these colours and this is what it looks like. So, let us count down

how many do we have 1,2, 3, 4, 5, 6, 7, 8, 9, 10, 11,12 okay and 1,2, 3, 4, 5, 6, 7, 8, 9, 10

so it means that there are 120 hidden neurons over there and each of these is 28 cross 28

which we have. Now, the these kernels which you see these are basically convolution

kernels which has it has done and these are my first level of feature extractors, but now a

lot of these are very bland looking and very near to 0 and as if like they do not extract

any particular feature now that is a risk over there.

(Refer Slide Time: 18:07)

Now, what happened is? That if we started adding noise which was at those perturbations

to it and say this noise is 25 percent of a noise power which means that the maximum

amplitude of the noise or the energy of the noise of 25 percent of the energy of the

original signal, so you can control down that factor over there. Now once we have 25

percent noise added over there you see that it has started to learned down much better

representation of features and then these bland appearing or no feature extracting once

also went out and then you can see down exact features coming down.

So, while this one is retained this particular patch is what corresponds to this patch and it

has retained on these three patches, while it was not learning anything it did end up

learning new kind of a representation over there and that is something which is

interesting to see that newer kind of representations get learned when you add down

noise over there and to go down to make even a statement that noise is actually good

noise, now which is good in terms of making it more robust to learn down newer kind of

features which it would not have learnt otherwise you cannot guarantee that you will be

putting on all sorts of samples which are ever existing in the world you are training it as

ait is always limited, but then in order to generalize it will have to try to figure out water

features which will describe an unseen unforeseen object of the same class or category as

well.

(Refer Slide Time: 20:17)

So, you see that adding a noise over here does worked out that magic and then we also

try to look into dynamics of weights with noise which is if more and more amount of

noise is added then does it go on good . So, over here we consider two different neurons;

Neuron A and B which appear as if almost similarly noisy not basically capturing

anything, so these values are very close to 0 when you add down a 0 percent noise.

Now, when you add a 10 percent noise they start to have some sort of an appearance over

there so you would see this dark blobs coming down, but at two different regions and

they appear still to be like as if learning something similar sort of a nature, at 20 percent

noise they also appear to be learning similar sort of a nature and this dark lump has

grown bigger, so this is where it more of mimics and inverted Gaussian kind of or more

of like there is a 0 value there is some sort of a positive value and then there is a very

high negative value is what it comes from.

So, it is more of like a Laplacian of Gaussian which is created over there so it is a LOG

equivalent kind of thing which it is learning, but then the moment you see that you add

50 percent noise while the top neuron retained it is own Laplacian of Gaussian like

behaviour the bottom neuron started to mimic something like a Gabor wavelet and this is

quite interesting, because you see that by adding them noise while it is trying to

generalize over a larger number of unseen examples in order to generalize it did end up

learning newer kind of features and that is a really interesting fact that it will not

memorize, but actually learn to be even better from now on.

(Refer Slide Time: 21:53)

Now, from there let us get into the other kind of an example where they try to like really

perturb the data in a different form of way. So, these examples are basically ways in

which you can change down the nature of the data and then make your training more and

more robust.

(Refer Slide Time: 22:05)

And so what was found out is that? Stacked Denoising Autoencoder and SDA stacked

sparse denoising Autoencoder and SDAE of with 3 hidden layers over there was sort of

outperforming on most of these kind of rotated versions or unforeseen versions on which

it was training down for digit recognition then any of the other classical ways including

the belief networks or even support vector machines.

(Refer Slide Time: 22:37)

So, that is quite an interesting observation to make from these kind of very simple

learners.

(Refer Slide Time: 22:43)

Now, the next one which I would discuss is on OCT tissue characterization from our

earlier work and so I would not be going down any further through the details on this

dataset because this is what we had done in the earlier week as well.

(Refer Slide Time: 22:51)

So, here if we look into so this was the sort of network which I was dealing with so these

was just two hidden layers in the network and this is what was predicted out and then my

objective was to relook into what it had learned.

(Refer Slide Time: 23:03)

So, you see you remember that this is what I was showing you out as it was learning in

the first hidden layer and a lot of these weights were similar and that should have an

impact in the second, so the connection between the first hidden layer to the second

hidden layer in terms of it creating a lot of zeros and this matrix this sort of a weight

matrix so this is one weight matrix which connects known my neurons with my first

hidden layer to the neurons in my second hidden layer and this is practically a sparse

matrix because very few pixels except for5, 6 pixels over there everything else is

perfectly 0 value and that brings it very close to it being an exactly very typical

representation of a sparse Autoencoder.

(Refer Slide Time: 23:51)

So, on the take home messages over here what I have is that; I would re suggest you to

get back into this thesis from Rasmus book, Palm and which has much more details if

you would like to get into understanding what happens on other kinds of cost functions

and other types of sparsities or any other more improvisations which you can do and

what changes you need to bring over there? As well as Pascal Vincent’s the MLR paper

is very good treatise on understanding sparse Denoising Autoencoders. So, this is what

brings me an end to our understanding with very basic Autoencoders and while we are

still taking down the seeking down to one single sort of a learning algorithm at itself.

So, in the next week we will be looking into different kind of cost functions and different

kind of learning algorithms and initialization methods and what they, how they impact

down your process and the rest of the classes we will be doing a bit more of coding

based tutorials in order to get you more closer to understanding practical concepts and

how to train down these networks from scratch and create down your own auto encoder

networks in stack mode modes in which sparsity and with denoising criteria.

So, with that, stay tuned and we will get back with more details in the subsequent

classes.

Thank you.

