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MNIST and Fashion MNIST with Stacked Autoencoders

Welcome.  So,  today  we  would  be  doing  a  short  demo  around  with  a  stacked

Autoencoders, and for this purpose we are choosing down the standard data set which is

on handwritten digits, and that is MNIST data set. And here what I am going to show you

around is that.

(Refer Slide Time: 00:30)

While we have already discussed theory on how stacking within Autoencoders is used in

order to hierarchically keep on building. So, there were two different particular kinds of

stacking which you had done, and I  used to call  them as one method, and the other

method or one was end to end pretrained stacking, and other was a ladder wise or greedy

growing method over there.

So, and one of them you had all the layers stacked in the encoder side. And similarly you

had a cascaded architecture on the decoder which was almost like opposite in philosophy

to what was present in that encoder. So, if an encoder you were reducing the size over

there in decoder, you are just going to increase the sizes, and then one way is where you

train this whole network into it, and then you discard the decoder and have just this front



part of it where you are learnt the representations for your classification. The other one

was where you could actually grow one layer at a time, and there you have an pair of

encoder decoder, encoder decoder being form and you keep on successfully chopping of

the  decoder  side and increasing  an another  encoder  layer, and have  a  corresponding

decoder over there.

So, we are actually going to replicate both of these methods over here within stacking of

Auto-encoders. So, one of these approaches which we do so.

(Refer Slide Time: 01:42)

We have the same codes as you had done in the earlier ones, and as with how it goes

down is that in your initial header, its present over this. So, on the run let us just keep on

executing that.



(Refer Slide Time: 01:53)

Now, comes down to your data set part. And if you remember then this part of the code

looks quite similar to what you already had, and that was just with trying to call down

your MNIST data set from within your torch vision data sets application and that creates.

So, one was to get your training data set, and then to create down your training loader

and which will be just looking into how many number of parallel loaders, you can work

it out and as such its equal to number 4, and then you also set down your batch size and

which is equal to the number of images it fetches, found in one particular batch. So, that

is how it goes down.



(Refer Slide Time: 02:32)

And you have your classes and everything defined.

(Refer Slide Time: 02:34)

In the next part is where you have your gpu accessibility and compatibility calls and in.

In fact, you by now that you have done a significant number of these exercises. You have

been able to understand that this part of the code makes your whole rest of the codes

quite generic and easy to work it out on. So, in case your gpu is not present then it just

throws you a flag equal to false. So, your used gpu flag turns down as false, and in case



your; you used gpu flag is not set down then none of your models or data gets converted

on to a gpu array and you can keep on getting it done.

(Refer Slide Time: 03:10)

So,  the  next  module  is  to  get  down  defining  an  autoencoder.  So,  in  case  of  an

autoencoder what we have over here is, a very simple approach. So, what we are doing

is, initially we start by defining linear network which is just connect down 28 cross 28

number of pixels a 784 pixels connected to 400 neurons over there.

So, 784 to 400 neurons and on the other side of the decoder is 400 to 784, it is just one

layer at a time over there. Now once your layer definition and initialization is complete,

then  the  next  part  is  that  you  write  down your  forward  function  and  your  forward

function, what it does is, that it will do a forward pass over the encoder which consists of

a linear layer and a tan hyperbolic as a transfer function, and the decoder which has a

linear layer and a sigmoid as a transfer function over there. So, once this comes out.



(Refer Slide Time: 04:02)

Then you have your network which is defined as yours. So, your autoencoder module

which is created over here; that is what initializes done down the network and then you

can print your network. And eventually if you have good accesses then you can convert it

down to your cuda arrays as well.

(Refer Slide Time: 04:21)

So, we get down this encoder decoder structure over here which just connects. Now 784

neurons onto 400 neurons, a very simple autoencoder architecture as such.



(Refer Slide Time: 04:30)

Now, what we will do is, we will start with training this autoencoder. So, for the purpose

of training it is kept down as small. So, we just have 10 iterations over which it would

iterate. So, 10 iterations or 10 epochs is where it would be going through all the 60,000

training data points available on it, and the learning rate has been kept down as 0.98. And

since we are in a autoencoder structure which means that on the decoder side, we are just

trying to recreate whatever was present on the encoder side itself, and this typically is

something which is equivalent to a regression problem which we are trying to solve.

And now we are trying to minimize the error which comes between whatever is decoded

and formed and the original;  whether  it  is  able  to replicate  the original  image in its

perfect way and the best way of doing. It is to take down an l two norm as a loss function

or mean square error in your losses. So, that is where we define the criterion as in with

the earlier cases. So, here its MSE loss, because you are not doing a classification, but

you are just doing a representation learning. So, now, within my iterator over here. So,

while I am running down, my whole network over here, over the range of iterations and

that is my epoch.

So, I start by doing the first part of it, where you are just going to convert all of these

data which is available to gpu, in case you have a gpu available, and you decide to run it

on a gpu.
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The next part as it goes down, is that you know to zero down all the gradient residuals

within the network. So, that it  does not create any confusion with left over residuals

within a particular. So, yeah; so, basically your gradients which were computed in the

earlier epoch should not play any role in the current epoch, and that is the whole purpose

of this zeroing down on the gradients. Then the next part is, just a forward pass you give

your inputs over here which is one image. On the output you again get the same kind of

an image, then you have a batch, then you give a batch of images.

You get a batch of images on the output side of it. Next is compute out your mean square

error using the criterion function which is just the mean square error between the output

and the input image batches, which are formed. And from there you have your loss, and

then you do a derivative of the loss using your loss dot backward compute. Once that is

done, the next part is basically to update it using the standard gradient descent learning

rule, and you have a count over whatever loss is accumulated, over your epochs present

over there, and that is how the whole network gets trained. So, let us run this one. Do it

for sometime till it finishes off.



(Refer Slide Time: 07:02)

So, you see that one of the iterations are over and it has a mean square error which comes

down to around 0.19.  So, now, two iterations  over it  comes down to 0.10.  You see,

clearly see that there is a decrease in error and then it keeps on steadily decreasing. Now

one thing to keep in mind is that, since it is a fully connected layer with lot of neurons.

So, it would take a bit of time, and that is where it takes down a bit of time for us as well.

And after some time you see that now that it is nearing the actual plateau region, the

valley region where it is supposed to come down to an optimal.

So, the relative change, the relative difference between these errors which comes down

between two epochs, is also going down quite slower. Now you can actually play around

over there. So, what you can do is, you can change down your learning rates and play,

and see if this comes down pretty fast or not. So, this is an optimal combination which

we  are  given,  but  then  this  is  not  always  necessary  that  this  would  be  the  only

combination which is possible. You can set your learning rate as 1 to 10, 100 and then we

have already done some exercise it or going to be changing down the learning rates in

the earlier part of the classes. So, here you can just make a change around with your

learning rates as well, and then you would be seeing that this changes. Now here this was

the first approach of training down where the whole thing was that. You have one layer at

a time which is being trained.



So, your first hidden layer is now trained and that is at the end of this one. Now my

objective is that, I want to introduce a another hidden layer over there, and that is where

my stacking of layer comes down.

(Refer Slide Time: 08:36)

So, in case of stacking of layer what I do is quite simple. So, what I would do is, I have

my network which is strain which was net. Now I take my encoder part over there and

then start a. I add another new module to it. I call this as say a new encoder layer and that

is basically sequential connection or a fully connection between the 400 neurons to 256

neurons.

So what now I have within my auto encoder is, in the earlier case you just write the 784

neurons going down to 400 neurons. And then again reconstructed to 784 neurons. Here

what I do is, 784 neurons going down to 400 neurons going down to 256 neurons. From

there; coming up to 400 neurons, from there going to 784 neurons. So, this becomes my

first  part  of  it.  Now similarly  in  the  decoder  part  where  I  have  256  neurons  to  be

connected down to 400 neurons, this comes down.

 Now in my encoder what I do is that I connect down a tan hyperbolic transfer function

over there, after the output of this 400 neurons comes out. And then on the other side of

my sequential  which is  to  be connected  to  the decoder, just  one  layer  before  to  the

decoder I also have another tan hyperbolic function. Now if you clearly recall, then in the

earlier case when we were trying to define our network over here, you would see that



there is a tan hyperbolic function which is connected to the output of these 400 neurons.

So; that means, that any of the values which comes down in these 400 neurons over there

are in the range of minus 1 to plus 1.

 now whatever is the input to this particular layer which connects down 400 to 784 that is

also in the same range of minus one to plus one as comes down over here now we need

to preserve that whole aspect here as well when we are tracking down neurons and for

that reason what we have is that 400 neurons. So, whenever I have 256 connecting down

to 400 neurons. So, I have a tan hyperbolic transfer function and not any other transfer

function. So, you need to keep this whole concept of dynamic ranges in your mind. So,

in  case  you are not  using any transfer  function,  it  does  not  hinder  you in any way,

because you just have a linear pass over there.

But in case you are using a transfer function, then you need to keep in mind that my

transfer function should be such that the dynamic range of the responses are in the same

order, and they do not get confused around with each other. Now once that is done. So,

this, these parts are just added over there and then I can print my network. So, let us just

see what comes down.

(Refer Slide Time: 11:02)

So, you had your earlier case which was the linear connection from 794 neurons to 400

neurons  then  a  tan  hyperbolic.  The  output  of  this  one  goes  into  another  sequential

connection from 400 to 256 and then tan hyperbolic transfer function.



 Now input to the next decoder layer is 256 to 400 and tan hyperbolic function, and

subsequent to that is my earlier version of the decoder, which had 400 neurons connect

down to 784 neurons and a sigmoid transfer function. So, my philosophy over here, by

adding these two new encoder and decoder layer, does not make much of a difference in

terms of how the data is propagated. Though if you look into this structure over here.

This  structure does  look quite  nested out  in  a  way, because as  per the  nesting  what

happens is, this decoder has been nested out with this autoencoder, this encoder layer

over there and this is on a separate list level. So, that is up to you how you define your

hierarchical  strategies,  but  till  it  is  a  linear  network.  It  does  not  make  much  of  a

difference coming down.

(Refer Slide Time: 12:00)

Now, with this one; now we start training down the whole this modified new network

once again. So, from the first part of it, it is pretty straightforward and then you do a

forward pass and get down your outputs. And then you have your loss function defined

and derivative taken down about the loss function, and then you have your learning rates

update rule which is defined over here.



(Refer Slide Time: 12:23)

So, let us get this one running. So, what you would see eventually over here, is that this

might take slightly tad bit longer than what it had taken in the earlier case, though you

have sort of better train model over there.

So, if you look down at the mean square error which comes down around 0.76961. And

if you look at the closing error over here; that is about 0.66. Now one question which you

might come down and you can definitely ask is, why did this error suddenly jump up?

You need to keep in mind that the encoder decoder the newer layers from 400 to 256

which we have now connected; that is randomly initialized.  And that does mean that

whatever  is  coming down on the learnt  representations  and getting  forwarded to  the

decoder layer subsequently, is now pretty much random, that has to learn down exact

representations.

 And that is why the starting error is a bit more than what was the ending error over that,

and then this keeps on going. So, till now we are at a position where we are not yet close

to just the error which was received by just using one hidden layer. Now it may be a case

that you might not be able to reach down the exact error rates which you had achieved by

using just one hidden layer, and there is nothing to panic around it. The only point is that

you need to keep some things in mind which is merely stacking down. Layers is not a

guarantee that you will have a higher accuracy and lower error rate ok.
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We are trying to solve down the actual problem of classification over here using auto

encoder for representation learning. And then we are using a stacking policy and the

mean square  error  estimate,  in  order  to  find out  my error  estimates  for  this  stacked

autoencoder. Now we are measuring down the networks for ability to perform against

one particular task. Whereas, the network is supposed to be used for another task and that

is classification.

So, given all of these things in mind what you need to have, like really outlined over

there is that.  It is not necessary that just stacking down will bring down your errors;

however, clever stacking and change of error rates can actually bring it down. So, at this

point, I would leave it to you to actually go up and as update this learning rate, because

this learning rate has been kept the same, which is of 0.98 as we had for the first case,

where I was just using one single hidden layer.

 Now play around with this learning rate and you can definitely see a change coming

over here. In fact, with the ability to even modify and go down.
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Now, once this part is ready. So, what we have now is an autoencoder, which has two

hidden layers. Now my whole objective was to create a neural network, where I have two

hidden layers, and then a final output layer for classification. And since, I am using the

MNIST case.  So,  all  of us  are  quite  aware that  this  is  just  a 10 digits  classification

problem 0 to 9 written in 100 and 100, and numbers which are in small snapshots of 28

cross 28 pixels, and you have to classify it out. Now over there I would need to modify it

down some part of the network, because I do not need the decoder as such anywhere

now. So, now, what I can do is, I can start defining something called as a classifier. The

whole object  of this  classifier  is  actually  to get  down my sequential  network,  which

comes down from the first part; like just reduce the end part of it. Now if you look into

your structure of the network which was given down in the earlier case. So, let us get up

over  there.  So,  what  you had is  this  encoded layer  over here,  which had this  newer

encoder and this decoder.

Now for me I would just need to preserve out this layer and I would need to preserve out

this layer. These two layers are something which I can do away with. And the best way

of solving it out is, first delete this layer then delete this layer, and then you just have

these two connections present over there. So, that is the typical thing which has been

incorporated over here. Now once that is done, the next part is that I would need to add

down. So, now what I have is, 784 neurons which goes to 400 neurons, that goes to 256

neurons from 256 neurons. I will have to connect it down to 10 output neurons over.



So, for that I start adding down this extra sequential model, which adds down 256 to 10

neurons. And now my transfer function over here is a log soft max. So, this is taken

down from the perspective that I would like to have a classification function, and not

necessarily a regression function anymore, and for that purpose. So, let us just run this

part of the code and you would see your new layer coming it out.

(Refer Slide Time: 16:51).

So, you had 784 to 400, 400 to 256 which was preserved as in the previous case. And

then you added down this classifier part which was 256 to 10 neurons.

(Refer Slide Time: 17:02)



Now I  would  be putting  down my whole classifier  to  train.  Now here I  have  again

changed my learning rate and that has, that is no more as 0.998 which was close to 1, but

it is not 0.1, which is say 1 factor, 1 decimal factor lesser than what we had chosen. In

the earlier case my criteria also changes, it is no more mean square error loss, but now it

becomes class negative likelihood loss function.  Now this is just  a classification loss

function which we have used over there.  And in fact,  like when we do down in the

subsequent  lectures  on  loss  functions  for  and  different  kind  of  error  measures  for

classification  versus  regression,  you will  be  finding  out  a  difference  of  what  comes

down.

(Refer Slide Time: 17:46)

So, here the whole aspect is that; now, when I try to look into my training and output. So,

I give my images which are my inputs, and then I get my output. Now my outputs in the

earlier  case, when I was doing representation learning with rotary encoders were just

compared along with inputs. Now it is no more. Now whatever is my predicted output is

pitched against my ground truth label of that particular image, which has been passed on

to it for training purposes, and that helps me in calculating this negative log likelihood

error loss function. And then we do gradient of the loss and subsequently, and update

using the vanilla approach of gradient descent, the simple gradient descent approach.



 Now once this part is done, then what you do is that you keep on repeating this over the

total number of images, which are present down over there and then you can keep on

training the network.

(Refer Slide Time: 18:34)
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So, let us just keep on using this one. So, it’s a, these I just answered an implicit calls

around with future things which would just become defunct.  So, you do not need to

worry at this point of time. Now if we look down over here.



So, I have my error as well as my accuracy, both of them being printed, because at each

point like while this part was calculating out the losses over here. In the next part it was

also finding out the total number of predictions, and whether the predictions are correct

or not as in over here. So, if the prediction value is correct, then its accurate, and that is

what is being used in order to pitch over here. So, if you see that after having made this

classifier, which used pre trained autoencoder network in order to do it. So, we reach

down somewhere at  91.83 percent.  Actually see in terms of classification and that is

associates itself with the negative log, likelihood negative log, likelihood loss of 0.3.

So this  is  about just  training down standard the network,  in case of using a  stacked

autoencoder principle.

(Refer Slide Time: 19:50)

Now, what  I  would also like to  look at  is  what,  how was it  performing in terms of

different classes which is like each of the classes. Was it more prone to make an error

while classifying, and for which of the classes it was, where it was not making an error

while classifying the whole stuff. So, just let us look and when just wait while the whole

thing. Oh sorry; I had actually accidentally said this one running. Once again we just fit

for some time. And now one interesting point is that, since I did not update the network

and I just used it for running. So, it started actually from the old place where I left it

down.



And that is why the first beginning accuracy of the earlier model starts around 892. So,

this was an accident thing, but fortunately you will be able to get down the model which

has a better accuracy. So, one simple way is that when you are doing, do not restrict it

necessarily to just any box, but keep on playing around with more number of epochs. 

(Refer Slide Time: 20:56)

Now once that is done. So, let me run this one once again and here comes down the

accuracy for each of these classes.

So,  if  you look down for  class  0,  its  98 percent  accurate  for class 1,  its  97 percent

accurate, and then you see that for class number 5 its just 88 percent accurate. So, this

was  1,  where  the  accuracy  was  going  below the  average  accuracy. So,  the  average

accuracy over here, is about 93.7 percent, and so anything below 93.7 is actually which

is below at 92.97 is somewhat close to the average accuracy. Some of them are very high

like 98 percent accuracy; some of them are really low which is like 88 percent accuracy.

So, these are typical ways in which you can actually look for class accuracies. In fact,

you can actually create another different kind of a matrix.

So, we had learned on in our earlier  cases about cost functions,  and your sensitivity

specificity matrices which are quite typical in case of classification. So, here what you

can do is, you can actually find out which class was getting more confused with the

class. So, you can have a 10 by 0 matrix and create a confusion matrix out of it, all the

true classes which are perfectly classified are, what will be located along the diagonal



and off diagonals are each other erroneous classifications which come out. So, this was

about trying to run it down with the simple example of using a stacked autoencoder. The

next example which I have is, basically to show it down using the other data set which is

on fashioned MNIST.

So, these were those small images of fashion objects or clothing lines, and which are also

available in the same form as a grayscale image, and in the size of 28 cross 28 pixels. So,

if we just finish it off, as in the first case you have your first part run down, then you

have your data loader and whole thing. And since from the earlier experiment which we

had also done with fashion MNIST; you do know that the number of samples, and the

distribution of the train, and test class is quite similar to as in MNIST. It is also a 10 class

classification problem. So, here my whole network is also defined in the same way, and

the whole logic of trying to do it around with fashion MNIST was to show you that

similar kind of a network, on a different dataset can actually also work, and that is why

we just have a small subsection numbering being created out for the whole experiment,

so that you can build around with that.

So, any standard data set or anything which you would like to load and look around, you

can actually work it; however, like keeping, keep one thing in mind that you see these

errors which come down these error ranges do not necessarily need to be in the same

way, as you had for your case of just a simple MNIST space classifier. So, over here the

error ranges will be pretty much different, because your inputs are now changed. The

range in  which  your  inputs  vary they  are  also  quite  different.  And in  fact,  for  your

fashion MNIST you would see that it is not necessarily only white or the gray level 255,

and only black for the gray level 0. Here you have good smooth histogram across all the

different grade levels present in an 8 bit image, which comes out pretty perfect.

So, this is about just going down with it. So, let us just hope it gets out first. So, two

more epochs, and then we are done with the first layer, and then you would eventually be

going down to your stacking of layers as we had done in the earlier case as well yeah.

So, it comes down to 10 epochs and with one single hidden layer trains up to 0.063. So,

in the same way, we do a stacking of the subsequent layers over there. So, this was my

stacking thing which I had done in the earlier  case,  and then I get trained down my

stacked  out  version  of  the  auto  encoder  getting  a  starting  point  from whatever  was

trained in the earlier case.



So, this would also be running down over 10 iterations as we had defined in the earlier

case, and you would see that typically you are lost over here is 0.89 and that is higher

than this  loss over there,  going by the same argument,  because you are knew earlier

which you introduced over here, that has more number of the; so, whatever were the

weights in that particular layer, they are randomly initialized at the start of it, and for that

reason you have starting with a higher error than the stopping error in the earlier case.

So, this we just need to wait for 10 epochs till it goes down, but you can clearly see that

over here. Now by the fourth epoch it has a error value, which is now going below, what

we had observed in the earlier case with just one hidden layer.

So, in the earlier case, you had just reached at the end of 10 epochs error point of 0.063

whereas, over here you see that by the fourth epoch you are already much below that

particular error point over there, and this is one of those classical examples, where you

can see that while in the earlier case we are just using MNIST by stacking down two

different  layers,  you  were  not  necessarily  going  down to  a  lower  error  in  terms  of

understanding representations. Whereas, over here you see that you can actually go down

to a lower error rate. So, that is, there is technically no relationship between stacking of

layers and whether it would work on your own data set or not.

But there is definitely a lot of relationship between the nature of the data on which you

are working, and what is the kind of images you are working; however, let us get another

thing quite clear at this point of time that we do not have any empirical rule. So, what

nature of a data, and what kind of an architecture would work out good, we seriously do

not know, and then that is something which people on the field actually explore out on

practical purposes. So, from there we just start with the classification, and then in the

same way of modifying the network as we had done in the earlier case. We modify it out,

and then you have ten neurons on the output side of it, and then you would be starting

down your training program, and since this is a classification problem. So, we are using

negative log likelihood loss function over here. So, we start with the training function

and then you see that you have an accuracy initially which is of 61 percent.

Then it keeps on going to 69 percent and the error also keeps on decreasing. So, let us

just see how much it can climb down. So, in the earlier case with just using MNIST you

had seen that during training, it had gone high up to 92 percent of an aggregate accuracy,

whereas, here it does not appear that it would be coming up to that level. So, that brings



us to another point that training over a large number of epochs is always a, definitely a

good idea if you would like to see it, because we have not yet technically saturated out.

So, you know that there is a chance of going much higher and looking at the amount of

change in which it is happening. So, it is changing in significant places of decimals.

So, this can keep on going higher and higher, if I have it for more number of epochs as

well as changing down the learning rate and making it a bigger number, might actually

accelerate your whole learning perspective as well. So, this is where I come to an end on

using  stacked  Autoencoders.  And  in  the  next  lectures  we  will  be  continuing  with

denoising as well as parts Autoencoders. So, till then.

Thanks and check out for the next lectures.


