
Deep Learning for Visual Computing
Prof. Debdoot Sheet

Department of Electrical Engineering
Indian Institute of Technology, Kharagpur

Lecture – 12
MNIST handwritten digits classification using autoencoders

So, welcome. Today we will be doing hands on session and this is with the use of an

Autoencoder.

(Refer Slide Time: 00:21)

So, in the last few lectures you have understood and studied about auto encoders and

previous to that, there was multi layer perceptron and the whole idea was that these auto

encoders can be used for 2 purposes. One of them is to do a very efficient representation

learning  and  the  other  one  is  to  actually  understand  about  how  to  use  these

representations as initializations for your multi-layer perceptron.

So today’s example which we will be doing is, a pie torch based tutorial and this is on

something which is well known and this is called as the MNIST classification challenge.

So as we had done on the lectures, I did say about that one of the earliest areas where this

whole aspect of deep learning was coming out and working out pretty good, was actually

in the aspect of using these kind of classifiers for classifying handwritten digits into 0 to

9 and that is how they were working out fine.



So today’s example  which  we  will  be  doing is,  use  the  standard  data  set  called  as

MNIST, and use this small patch kind of images for your handwritten digits which are of

size 28 cross 28 and then, we will be using them for classification purpose.

(Refer Slide Time: 01:32)

So, let us get started with it. So, as with any of our codes we have the initial part which is

a  header  structure  of  importing  down all  the  libraries  which  would  be  subsequently

needing for our work. So, here it does not need much of an introduction over there as

such. So, except  for one interesting package,  which comes down over here which is

called as opting package.

So,  we are a  bit  ahead of  time in terms of  introducing optim on your programming

paradigms. But, keep in mind one thing that we will be making use of a standard gradient

descent itself, although it is from a stochastic gradient descent with batch size of 1. So,

this  is just to make,  get you introduced to the advanced options available  within the

library and packages.

Now, as one important aspect, which I need to really point out is that, down the line we

will be discussing much more details about optimizers and, all aspects of this package

called as opting. But, for the sake of time and to keep it conformal to our subsequent

lectures, we are already introducing it over here. And then, this also makes your coding

quite compact without having to do, because if you remember from your earlier one on

multi layer perceptron, where you had your gradient descent coming in. So, the gradient



descent, the major issue was that, you had to put on a lot of lines of code in order to find

out your error, then do a derivative of the cost function, do a derivative of the network

and then update all the parameters over there. Whereas here, these are all just into one

single library and as we keep on going through it, I will be introducing you to further

concepts over there.

So, let us run this first part of the header block now. Once that works out, the next part is

to load your data.

(Refer Slide Time: 03:14)

So, this data is again available within your torch vision data sets itself. So, you do not

need to download something from an external web resource file and repack it in any

ways. So, the first part is that it goes on. So, the codecs option over here is just to do a

decoding over here. So, it will come down eventually. So, let us go to this download part

over there. So, since it is already downloaded for me and available to me, So I did not

see any other command coming down, but if you are doing it for the first time, you

would definitely be seeing some downloader command, is it downloading from so and so

location, and what you get down is, something called as u byte or unsigned byte type of

data file.

Now, it is not much of a concern to be worried about the data file. Because your, codec

function over here can actually read from those available direct kind of files. So, the first

part over here is, we have a few of these tensors, which are a few of these functions



which are more of related to how to handle down the data and get the data into your

torch tensors or as and when required even into your numpy arrays subsequently. So,

here the first part of it is just a small function written down to fetch down one integer at a

time or one image basically at any point of time.

So, what it does is basically there is a codec to read down and it reads in hexadecimal

format and gives you back an integer from every single hex code which is written down

onto the file. So, typically how it is stored is that, you have 0 to 255 or 8 bytes available

over there, 8 bits available over there. So, these 8 bits instead of, when you are storing it

down you can have some sort of a binary presentation and everything. So, the u byte

basically uses a hexadecimal number representation for storing these 8 bits over there.

Now, as it goes down with the, this hexadecimal representation form over there, you

need  to  decode  this  hexadecimal  representation  and  get  an  integer  equivalent

representation in 8 bits, and that is the purpose of this getting, which is to convert down

from a hexadecimal representation to a integer space representation.

(Refer Slide Time: 05:35)

Next is, here this parse byte function whole option is that you get down the whole file in

terms of a string whereas, this is a matrix, and you will have to a resize the whole string

which comes down into a 2d matrix over there.



(Refer Slide Time: 05:54)

So, that is the part of this, Parse byte function. And next is when you would be reading

down the image file over there. So, you need to give down your path name over there,

and this path name for the file is something which is given down in data pack, which we

will subsequently be using.

So, over here once you give down the data path over there, it reads out the data. Then it

gets what is the length of the data, the number of rows, number of columns and these

comes down from the data header structure in itself. So, once you go down into say torch

vision and get into the data sets you will be getting more and more details of how this

whole data is packed over there and this is quite simple. So, the MNIST row format is

what we are using over here in it is way.
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So, that function gets initialized. The next part is to read down the labels as well and

which each of these images the labels are also associated with another u byte file and you

will have to again pass and get down your single byte level representations. So, that you

know whether this image corresponds to 0 or corresponds to 1, 2, 3 up to 9. So, that

makes it a 10 class classification problem.

(Refer Slide Time: 06:54)

So, once that is done. So, the next part is you actually execute all of this. The first part is

that, I need to get down my training images and my training levels, and for that I will be



reading down my image file as well as my label file. And for each of them, the data path

for my training is my train images, u byte file. And my, for my training levels it my

training labels, u byte file. And for my test images they are 10000 images which are

available in your test and you have labels corresponding to each of these 10000 images.

So, for your training you have sixty thousand images, for your testing you have 10000

images. So, let us run this one and you will be able to. So, it would take a bit of time

because of this file I O operation going down. So, once this file I O operation is over,

then what we would be doing is, we come over here, in this part. Where, the purpose is to

print down the size of your training images and labels, and test images and labels. The

only purpose we keep on doing it in this way is to see what is the nature of the tensor and

whether the number of samples in training images and labels is the same and within your

testing images and labels is also the same.

(Refer Slide Time: 08:06)

So, you get down your training samples which are 60000 such samples and now, what

happens is that each is an image of 28 cross 28 pixels as we had already discussed. So,

28 cross 28 will map down to 784 neurons, linear neurons which you have. So, then you

get down your linear neurons coming down over here. So, you know that your training

size is 60000 samples cross 784 dimensional feature space, if you would like to put it

down on to a pixel wise feature space.



So similarly, you’re the size of the test images is. So, there are 10000 samples for your

testing and there are 784 pixels on your test part over there. So, doing that, we get into

the next part. Here the purpose is basically to try to display it out.

(Refer Slide Time: 08:59)

So, what we do is, we take the first image over there, and then map it down on to a 28

cross 28 form using this view function within torch which is quite interesting. Because

what it can do is, as in, if you had used mat lab for your resize or python for your reshape

operators, where you can convert one kind of a matrix to another kind of a matrix, say a

row matrix or a column matrix into a row cross column or 2D matrix over there. So, we

are using the same kind of a function in order to convert my linear matrix available over

here into a 2D matrix, and then just type cast it to numpy so that, I can use my pi plot. I

am sure in order to look into. So, as you see this is clearly a number 0 which you see

over here. I can change this and say make this as 2 and then run this one.
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So, the second image which I have over here is, something which looks like this and then

that is something like number 4. So, basically you can just play around with them and

then plot down a few of these images as well, now I can look into my test image as well.

So, I can just go over here and then make that change into image equal to test image and.

So, this is my test image. So, the second test image is basically, the number 1, as it comes

down. So for us, as humans, it much easier to understand but, the whole point is that, can

we make machines actually be that intuitive to understand these using neural networks

also.
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So, here goes another of our commonly known option, which was to have down. If cuda

is available then just find out whether there is a gpu so that we can use this flag of, use

gpu in our subsequent works as well.

So, here comes the first part, and which is about defining your network. So, remember

that we were speaking about an auto encoder as such.

(Refer Slide Time: 10:53)

So, an Autoencoder is basically where you have an input, you have a hidden layer and

then you have an output and the size of the output is the same as size of the input. And



technically what you are trying to do is, you are going to map this input to become. So,

whatever is the output that has to be similar to the, as close as possible to the input itself.

And that  brings is  pretty  much in to  the paradigm of what  is  called  as  a  regression

problem. Where your loss or your cost function over there has to be something in the

order of say and l 2 norm, l 1 norm or l 2 norm or an MSE: a mean square error.

So, if is that error over there is 0, it means that all values are mapped and it is on a

continuous space. So, here what we try to do is basically we try to represent linear for a

fully connected network from 784. So, that is 28 cross 28. Now those get mapped on to

100 hidden neurons  over  there,  that  is  the  first  hidden  layer  and the  transformation

applied over here is a ReLU or a rectified linear unit to go now.

So, the other part of the network this, typically this part of the network which brings

down from the image input to my representation space is, what is called as an encoder

unit.  Now the other part  of it  which is my decoder  unit  which goes down from this

representation  space  the  latent  representation  of  space  onto  my  reconstructed  space

which is called as a decoder. 

So, you remember these clearly from our last slides as well. So, that is where it converts

from 100 neurons to 28 cross 28.  And then the objective is that,  within the forward

function, whatever is the input that will be going through one forward transformation

through the encoder and then a forward transformation through the decoder itself and

then you have your Autoencoder form.
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And now, if your gpu exists, then you can convert it otherwise you can just leave that for

your CPU options over there. And the next point is that we would try to get down these

weights for our own usage at in a bit later on stage down the code.

So, this is using this function called as deep copy. So, what it does is that, it basically

copies down all the weights available at this point of time. So, what I would like to show

you a bit later on is that, while we are training you would be seeing down the change in

weights coming down ok.

(Refer Slide Time: 13:12)



So, let us run this function and then do it. So, once the Autoencoder is defined, because I

was printing my network over here, this is what the Autoencoder looks like. So, you have

linear units which are fully connected neurons which connect from 784 to 100 and then

on the decoder you have from 100 to 784.

(Refer Slide Time: 13:36)

So, here is where we start by defining the criterion function or the loss function. So, for

me the loss function is an MSEloss and the optimizer. So, I said that we will be making

use of another new thing which is called as an optimizer. So, this optimizer helps me in

writing down, reducing down the bulk of codes which we would be using, but details I

would be covering down in a bit later on lectures down the week.

So, as of now what you can remember is that, this optimizer is basically one sync simple

way of computing your whole gradient and doing the back propagation in one single go.

Now, for the first part is to train down the auto encoder or where we are going to do

down  the  representation  learning  part  over  there.  So,  I  had  set  it  down  for  3  for

convenience, but say let us make it as 10. So, I will train down this auto encoder for 10

epochs over there, and we will take a batch size of 1000 images. So that means, that what

will happen is that, you have total 60000 images for your training and I can break it

down into 60 different sets of 1000 images each.

So, after 1000 image, I am going to calculate my error and then update my network

parameters over there, and within epochs this will happen 60 times basically. Now what I



would run is,  1  iterator  or the for  loop over the range of  epochs.  So,  my epochs is

basically numb 10 epochs over there and then within each epoch what I am going to do

is, pull down my inputs and once the inputs are available, I would be converting them on

to a gpu array.

(Refer Slide Time: 15:11)

If my gpu is available, once that is done, do you remember that we had a model zero

grad or which was making all the gradients within the model as 0. So, here it becomes as

optimize zero grad and my. So, my output was the forward pass over my network, then

my loss was coming from my criterion function and then I had to find out my derivative

of the loss which is my backward.

Now, the next part is where I had w of n plus 1 is equal to w of n minus eta times of del

del w of j at w of n. So, that is what is solved on by this optimizer step function over

there. Once that is done, So this is whole update rule or backward back propagation is

what is solved over here, then we can get down our running loss calculated down and

then eventually, print down per epoch what is the loss coming down.
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So, let us run this part and you would see it running now. So, you see that it is trains over

10 iterations as we had done. So, iteration is basically 1 epoch which we are using down

over there. And this is what is plotting down the mean square, because that is the loss

over  which we are  calculating  it.  You can see it  steadily  decreasing.  It  starts  where

somewhere around 0.08 and then comes down to 0.022 and then there is a steady decline

as well.

So, this is not a, we do not know whether it has actually stopped or not, but this was just

to  show you that,  how much it  can  actually  go  down.  Next  is  to  check  down your

Autoencoder performances.
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So, let us look into your, what was it trying to reconstruct over that. So, let us give down

one image over here. So, what we have done over here is that, we take one of these test

images.

So, just as any one of these test images coming down over here now if the test image is

coming to us and a gpu is available then we just convert that over here onto my cuda

compatible form and then from there make it into a 784. Because it was a 28 cross 28

image which was coming to me. So, I just converted to 784 dimensional input and then

that is fed forward through my network and then I am again back converting it as my

output image.

Now, the whole point over here is that, I will be, I will try to display them as standard

grayscale images and that is what I do using these 2 parts of my function over there.
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Now pretty straightforward to go through and I am not going into much of a details now.

If you look into here, you would see that you see somewhat the shape and structure of

this number 2 as preserved which comes down over here, though there are some noisy

patches as well. 

(Refer Slide Time: 18:02)

So, possibly if you train over a longer number of epochs, you will be seeing down these

errors going down to a significant extent as well. So, the next part is that, we try to run

down some sort of a visualization in terms of what weights it had learned.
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So, these were basically the sort of weight matrix which was there before we started the

training over there. And then this is, sort of the weight matrix which looks into after your

training. So, these are basically small square matrices of 28 cross 28. And you have 100

of such app label. So, this axis basically makes it 280, this axis is 280, and this is a small

square patches of each of them plotted down. 

Now what we try to see is, what is the difference of these two weights and that has what.

So, these are the pixels or these are the weight locations which actually got updated,

during training. And you see that a significant number of them have been updated and

that is a training part which goes on. So, this is for simple visualization, but there are

more detailed explanation which are, which where there in the theory part and we have a

few  of  them  in  the  next  of  the  theory  part  and  these  are  more  intuitive  for  your

understanding and how to get more of them running.

So, once that is done, the next part is to get into, using an auto encoder for multi layer

perceptron based classification. So, here what I would be doing is that I no more need

my whole auto encoding part over there. So, my decoder block can be detached and I can

place down a multi layer perceptron in order to just classify. So, here for my multi layer

perceptron, I just need 10 layers which will correspond to my outputs over there for each

of these 10 classes. So, I get my input, I convert it to 118 variables and from there I bring

it down to 10 different classes and it has to be 1 hot as per my definition.
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So, what I do over here is a very simple part which is, so we take down the first part of

my network, which is my encoder. And from there, I guess add on an extra part which is

my classifier or just a mapping from 100 to 10 neurons over there and finally, have a

transfer function which is no more a ReLU, but a LogSoftmax over there. And then, the

option is basically if everything is available on a gpu, then to convert that and then used

on my copied weights from this earlier  train part.  So, these were my weights on the

encoder part of it. So, I just copy them down over there and then use those weights in

order to initialize my initial part over there.

Now, once that is done, let us execute this part.
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So, you can see the network looks something like this, that I have 784 neurons connected

down to 100 neurons and with a ReLU transfer function and then 100 neurons to 10

neurons with the LogSoftmax transfer function.

(Refer Slide Time: 21:09)

Then on this one, I also defined down my loss, but this loss is quite different. This is a

negative log likelihood loss or a classification loss, not exactly a mean square error loss.

So, a bit down the line when we are doing cost functions, later on I will be introducing

you to, what is the form of a negative log likelihood loss? Or to keep it much more



simpler, what you can understand is that, in case of a mean square error, you would see

down differences in terms of. So, in a mean square error, we were basically trying to

minimize the Euclidean norm between your input and output over here.

Now for a classification, when it is just a 1 hot vector, you know that one of them is

supposed to be high and everything else is going to be 0. So, these kind of ones where

one of them is high and everything else has a 0 probability, you can use some sort of

information  theoretic  loss.  And those kind of losses,  or  one of those kind of loss is

basically a negative log likelihood loss. So, I defined my optimizer as well over there and

then get into my classifier. So, here say I just decide to run it down for 3 epochs ok.
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So, I can use my initialize fits and then get into over here. Now if you typically look over

here, we were also calculating out what the accuracy of prediction. And you see that

while the loss is going down, your accuracy is also quite increasing over there. And then,

we come down to visualizing these weights basically. So, these were the weights of this

encoder before they were finally used for the classification part over there or end to end

update of the whole network and these were the ones after the subject happened. And this

is the amount of changes which are there on each of them.
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So, that does bring in to the fact that, while we are doing a fine tuning of the whole multi

layer perceptron using our initialized versions of weights from the Autoencoder, it does

significantly impact some of these weights. If you if you had trained this say the feature

layer, feature encoding layer for a longer amount of epochs and over here also for a

longer amount of, maybe this would go down actually because we have not yet seen a

convergence on the encoder.

So, for my typical experiences on this data set was that, run it down for 100 epochs; it

would go out pretty fine. But then, we would run out of time if we are trying to do that

on this lab class itself.
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So, here we try to visualize down the weights for the training for the classification part

over there. So, these were the initially random weights which allotted to the classification

network which is from 100 to 10 neurons over there. And this is what you see down for

the, after the training. And this is amount of updates we just went on.

So, this is one basic scratchpad of how to do it with the MNIST. So, in the next class I

will be getting you introduced onto 2 different forms of what are encoder training. So,

one of them was, where we have a ladder voice training or 1 network at a time and the

other one is, where you have a bunch of hidden layers and you train it as a non encoder

decoder network in one single stretch. And then use these initialization in order for your

mlp feature extraction or the initial layers over there. But there we will be using another

higher order data set and that is called as the fashion MNIST.

So, that is also a gray scale image available and is of the order of MNIST dataset itself

except for that they are no more handwritten digits or binary like images present over

there. But these are perfect grayscale ones, where you have intensities varying from 0 to

255, over a good linear span as well and these are images of clothes. So, 10 different

classes  of  apparel  and small  28  cross  28  snapshots  of  each  of  them and 60000 for

training and 10000 for testing.

So subsequent to that, we will also be doing on color images with something called as a

ALL-IDB data set. So, that would also perfectly work out and subsequent to that. So,



these are all patch voice classifications and eventually in the last Autoencoder lab, we

will be doing down pixel to pixel classification as well. So, with that it works out quite

good.

Thank you and stay tuned for the next lecture.


