
Deep Learning for Visual Computing
Prof. Debdoot Sheet

Department of Electrical Engineering
Indian Institute of Technology, Kharagpur

Lecture - 10
Classification with Multilayer Perceptron

So welcome,  and today we would be learning about Classification with a Multilayer

Perceptron.

(Refer Slide Time: 00:21)

And while  we have done down our basic  introductory  lectures  on what a multilayer

perceptron is  and then how to use it  for classification.  So, here the objective is  that

building upon top of what we had done in the previous class of using down just a set of

features,  extracted  from the  images.  And  then  we  were  feeding  it  through  a  neural

network  and  this  neural  network  just  had  the  inputs  connected  directly  to  the

classification output. So, you had nine features which were going down on the input side

of the neural network and it was just connected down to a 1 hot vector of 10 cross 1

dimension and that was basically because it has just 10 classes over there to classify.

So, any 1 of these classes is going to be 1 based on which particular class is being shown

over there, now 1 thing to remember clearly what there was that that was a very simple

perceptron model which did not have any number of hidden layers, but then when we

were  doing with  multilayer  perceptron,  we did  realize  that  you can  add down more



number of hidden layers and that would subsequently introduce a lot of non-linearity

over that and these non-linearity will be some sort of a hierarchical non-linearity going

down over there and that would help you in creating much better separation emerges by

learning much better kind of features as well. 

So, here today what we would do is write down such a network which will have multiple

hidden layers over there and see how it  gets  trained.  So, building upon top of those

scratchpads which we had used for creating a simple perceptron we will be starting for

that, so let it get into how this code particularly works over here. So, the first part so this

is on classification with the multilayer perceptron and this is still for your cifar10 dataset

itself.

Now, in this first part we just have the initial header and that is not much to redefine

around this header.

(Refer Slide Time: 02:14)

As well because we are just keep going to keep this as the same header over there. So, let

is just run and get down our initial files into the environment, now once that is done the

next part is that you already have your features which were saved down from lecture 3

exercises, where we had basically learned how to collect these features and so we run

them and these features come down to me.



(Refer Slide Time: 02:39)

Now, once I have loaded down all of my features on and my labels both for the training

and the testing over there, the next part comes down to defining this network. Now you

clearly remember that in the last case what we had was that there, so this class was called

as  a  perceptron  in  that  case  and  here  we  are  calling  it  as  mlp.  So,  mlp  stands  for

multilayer perceptron and then multilayer concept is which comes from that you have

multiple number of layers given down over there.

So, multiple number of layers in terms of multiple hidden layers present out. So, the first

part is basically an initialization module. So, in this initialization module what you do is

that you are going to define how many number of layers over there. So, we have 2 layers

and both of them are linearly connected. So, the first 1 is which connects down n number

of channels to 6. 

So, n channels over here are the total number of features which you are giving down to

this network. So, that is basically 9 for our case, but it can be any variable number. So,

this is a 9 to 6 mapping. So, this 6 number of neurons is the number of neurons present

down in your first hidden layer, now from that first hidden layer it connects down to 10

which are my output mapping and this 10 mapped down to my total number of classes in

the output. 

Now once that is done the next part is left with that I need to define; what is my forward

pass of this algorithm. So, in order to define my forward pass of the algorithm what I



define is that whatever comes in as in my input over there that has to do the first pass

through my l1 and l1 is a n dot linear which is a mapping from n number of channels to 6

channels.

Now once that is done my output is again stored at x, now that will have a non-linearity

and the non-linearity imposed over here is a very low kind of non-linearity which we put

down. So, this relu or rectified linear unit is something which is for any value less than 0,

you will truncate all the values to 0 and for any value which is greater than 0, the value

will remain as the same. So, this is basically some sort of form in which it remains linear

for positive values of x and become 0 for negative values of x; the next 1 is another feed

forward which you do through the next linear layer. And then finally you put down soft

max as your non-linearity coming down from the output of it.

(Refer Slide Time: 04:57)

Now, once that is done the next part goes down in your. 

So this is my Network which gets defined over here. So, let is just define my network

now comes down the data preparation stage over there. So, in data preparation what we

had done in last class was quite simple, so we define 2 matrices 2 sort of like 2 matrices

which were 50000 cross 10 and another was 10000 cross 10 and this was just for your

labels.



So, you remember clearly that we had labels in the range of 0 to 10, but then when

training this network we needed to have a 1 hot vector and that meant that it needs to

have 10 number of rows corresponding to 10 number of columns corresponding to each

single row and any 1 of these items on these rows is going to be 1 based on which

particular class it belongs to. So, we start with the same way so your train label becomes

a 2 d matrix of 50000 cross 1 and your test labels also become 2 d matrix of 10000 cross

1 and accordingly over here you do your reassignment.

(Refer Slide Time: 06:02)

So, just assign whichever value whichever class is 1 you assign that value as 1 over here.

Now once that part is done the next part is to work and create down your convert your

data set which is available as of now in as a numpy array to a torch tensor and that is

what we were doing it. So, this part of the scratch is pretty much same as what we had

done in the earlier class. And then the next one was to check down whether you have a

GPU available and a CUDA support on your system or not.



(Refer Slide Time: 06:35)

Now, once that  gets  done and so we start  by defining at  the training routine for our

model. So within this training routine for the model the idea was that you would have

some sort of an iterator and this is an epoch iterator.

(Refer Slide Time: 06:46)

Now, within the epoch iterator there is a fancy sort of a function called over here, for the

time in order to check out how many seconds’ milliseconds it takes basically to execute

each of them.



So, we remember from our last one that it was taking roughly about 1 second and in total

for 20 epochs it took down 27 seconds to execute. So, from there the rest of the concepts

in terms of running laws then creating a batch over there and using your train loader that

remains the same and then if GPU is available then to convert all of these to your CUDA

tensor type. So, that you have a memory transfer from your cpu rams on to your GPU

ram that is also quite clearly and this is what we are just repeating from the earlier case.

(Refer Slide Time: 07:38)

Next before you start training you will need to always 0 down your gradients once that is

done next is the feed forward routine and that defines as output is equal to model of input

and model is basically the function which is my multilayer perceptron neural network;

given all of that the next part is to use these output in order to get my predictions for each

of these classes, and then from there find out my loss which is defined according to this

criteria.



(Refer Slide Time: 08:06)

So, the criteria function gets defined a bit later on as of now we are just using it as a

simple pointer called as criterion and then you find out your batch phase losses. And

finally comes down the point where you need to update your parameters.

(Refer Slide Time: 08:23)

So, here is where this happens so if you clearly remember you have multiple number of

hidden layers over there and there are multiple number of connections between each of

these neurons in 1 layer to other neurons in the subsequent layer and this is what is called

as those free parameters or the weights and these parameters are what get updated. So,



your update rule which was given as w of k plus 1 are is equal to w of k, where w of k is

basically the weight of these connections within the neural network at the k-th iteration

and minus eta times of del w of j w and that k-th iteration.

So, we need to have our gradient of the data as well as the learning rate and that is going

to  define  down what  is  my  update  parameter  over  there.  Now from this  once  your

parameters are updated then you can actually look into your total epoch loss. So, what

we are doing over here is that you run down basically 50000 training samples throughout

1 epoch and accumulate all the errors.

So, your epoch loss is basically average of that error and that is where this part comes

down and then you can keep on basically creating an array where you are adding down

all of those losses and it becomes easier to plot down. Now here you have these printer

statements which basically print down what is the total epoch loss which comes down

while it is training down, so that you can see that it is convergent or not.

(Refer Slide Time: 09:55)

So, this is where your trainer model gets defined. So, let is just run this part and keep get

it be fetched as a function within your environment.



(Refer Slide Time: 10:06)

Now, once that is done the next part is to actually get into your initialization and training.

So, the first part is we need this length of features and this is what we know from our

earlier experiences, you can as well look into the dimension second dimension of the

pickle file that is and fetch it out as well that is also pretty much possible. Now within

your model first thing is that since we have CUDA available.

So, we just defined it type castrated once again into CUDA and then define the criterion

or the loss function as MSE loss function and then we set this 1 to train. Now let us and

then we are training it again with just 20 epochs in order to look into how it starts to

behave.



(Refer Slide Time: 10:48)

Now, we do see our losses coming down over there and if you look down. So, this is

where the error is changing around on these points. And then that is changing down quite

slowly I will not say that it is pretty fast, but there is a decent amount of decrease which

keeps on going down. And although sometimes it does even look to increase as well and

it is roughly taking down it shows as 1 second, but there are a few more milliseconds as

well.

(Refer Slide Time: 11:19)



You see that do not take actually  much more of a time as compared to the earlier  1

because, you still finished off your t20 epochs within 27 milliseconds and this is how

your training loss was falling down. So, you can add down the extra module which we

had in the earlier 1 in terms of accuracy and you can see the accuracy growing as well.

(Refer Slide Time: 11:38)

Now, once that is done the next part was to go with your train module and then look into

it is testing part. So, over there what we do is we pull down we run an iterator, over the

test dataset over the length of the test dataset and then feed forward each input through

the model which happens over here.



(Refer Slide Time: 12:06)

You get down your outputs and then see if your predicted output patches down your

exact output and if it is. So, then it is correct or not and interestingly what comes out is

that since the training has not yet completed. So, you get down 0 accuracy, but you can

keep 1 running this 1 for a longer period of time. 

So, for the sake of time constraints we are not running this for longer duration of time,

but you can definitely try running this for a longer duration of time. Now there are a few

interesting aspects which I would like to reiterate from our earlier understanding, so 1 of

the major a point is that if you look into most part of this code, then they are actually

something which is quite modularly written down. So, if I want to create a change in my

model say I would like to change down my non-linearity.



(Refer Slide Time: 12:48)

So, I can just change make a change over here or over here, if I want to add down a few

models  over  there.  So,  if  I  say  I  want  to  add down a  few more  linear  numbers  of

channels, so I can just keep on adding down over there. So, say like I just want to add

down another layer I can write it as nn dot linear. 

So, I have 6 number of outputs from there from that 6 number of outputs I can again

think of going down to say another 6 number of outputs over there. That is also pretty

much possible then I can do a nn dot linear from and so this will be self dot l3 is equal to

nn dot linear of 6 to 10. 

Now once that is done over here till this point I just had with the self dot l2 and what I

can add is x is equal to self sorry, I can add another value and get a non-linearity imposed

over there; now once this part is solved over here the next part is that I will have to again

feed that through another part of the layer and that becomes x equal to self dot l3 of x

and from here whatever comes down that goes into my soft max and then this will create

down a new model, so we can just do a run on this 1.



(Refer Slide Time: 14:22)

Now, once that is done I can again do the subsequent runs over the next and here comes

my training module, you see increasing that I just got a tag bit more increase it came

down to  somewhere  around 2 seconds and so we just  need to  wait  for  a  few more

moments till it gets over.

(Refer Slide Time: 14:51)



(Refer Slide Time: 14:53)

So, it would like to you it should be a much easier way because, within this library all

though it looks like a lot of lines of codes but most of these are modularly written. So, if

you want to make change onto your architecture there is just 1 function over there, which

defines these architectures and you will just have to make a shorter change.

(Refer Slide Time: 15:12)

So, by now it is complete it took down about 32 seconds and you can see that it had a bit

of jagged behavior and it was much slower in actually falling down. So, the error did

decrease to a much lower front as well, but then the rate at which it was decreasing also



we can slower. So,  it  is  not  always necessary that  just  by increasing  the number  of

neurons you will have a much better decrease over there. 

So, I can even play around with the learning rate over here say I make down my learning

rate as 1 and I can again set that 1 running, so I just need to execute only this part of it

keep 1 thing in mind, if you are making some changes to a previous 1 then you need to

execute all the subsequent blocks so that it comes down. So, this is on I python notebook

so it  gives  you a much interactive  way of  solving it  out  and a  much better  way of

learning, you can always copy all of these into a direct python code for you and it will

appear in the same modular way within your python environment.

(Refer Slide Time: 16:15)

And you can just execute that py file within whatever is your choice of environment

most likely most of us would be making use of anaconda python in order to do that and

that becomes easier. So, you see that when I change it to a learning rate of 1, this is how

it was falling down and then that was not even a steady fault. So, it became much more

linearly falling down and much jagged and the error was also much higher.

So, I can make a change over there and say make this as 50 and see. So, these changes

which I am making over there on the learning rate that is the factor, which is going to

update my eta in my learning rule and that does make a very important statement in

terms of how fast it is going to learn and how fast it is going to converge; all though the



major  theoretical  reasoning  behind  that  is  that  this  eta  is  going  to  scale  down  my

gradients as being proportional to the weights which it needs to update.

(Refer Slide Time: 17:03)

There are definitely some more questions which a lot of you can ask which is that every

single layer will have a weight of it is own dynamic range. So, eta should be different

and yes  that  is  also  pretty  much true  and that  is  what  we do observe.  So,  it  is  not

necessary that always getting down a slower eta is going to make you a better convergent

or even getting down of bigger eta is going to give you. So, if I change that even to 500

or 5000 maybe it does not come like this, but it starts jittering over there. And they are

some of the interesting stuff you can play around with your learning rates.

So, down the future lectures we would be getting more of a clearer understanding into

how this happens and why this happens in more of a way. So, till then keep on enjoying

with more of these lectures and do keep on coding as we continue with the theoretical

lectures as well and so. Then, we see you for the next class.


