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Least Norm Solution 

Hello. Welcome to another module in this massive open online course. In this module let us 

start looking at another important concept in linear algebra, and also pertaining to the solution 

of system of linear equations and that is the least norm solution. So, far we have seen the least 

square solution, we will now start exploring the least norm solution. So, what we want to do 

is essentially we want to look at the least norm solution. 
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So, this is the least norm. Previously we have looked at the least squares. Now, we want to 

look at the least norm solution. So, once again, consider the system of linear equations. 

Consider the system of linear equations, we have y1, y2, ym this is equal to once again the 

matrix A, comprising of the columns a1 bar, a2 bar so on up to an bar times the vector x bar, 

which is x1, x2, up to xn plus that is it, this a system of linear equations. 

Except in this case, so we have this matrix this is an m cross n and for the least norm problem 

specifically, we have m less than n. So, we have m cross n matrix, m is the number of 

equations, n is the number of unknowns and we have m less than n. So, this system of linear 

equations is essentially characterized by the fact that number of equations. So, m less than n, 

this implies that number of equations is less than number of unknowns. 

So, the number of equations is less than the number of unknowns. Also m less than n 

remember, m equal to number of rows of the matrix A. So, you have this is basically your 

matrix y bar, this is basically your matrix A, and this is your matrix x bar, so you have y bar 

equals A times x bar. So, you have the matrix A in equals number of columns of A, of the 

matrix A. So, if we look at the matrix A, that looks like, so this is your matrix A, this is the 

number of rows and this is the number of columns. 

So, number of rows is less than the number of columns, this implies m less than n implies that 

the height of the matrix. If you look at the number of rows as the height, so the height of the 

matrix is less than the width implies this is a wide. Implies, this is what is known as a wide 

matrix. So, if you look at, if you want to find a, form a picture of the system in your mind, it 

is always useful to form a mental picture in your mind. So, we have an underdetermined 

system of linear equations. 

 So, to form a mental picture, essentially I have a matrix A, in which the number of rows is 

less than the number of columns that is the width, that is the height is less than the width, 

which implies this looks like a wide matrix essentially. Remember the least squares was the 

other way around, the least squares had number of equations more than the number of 

unknowns. So, number of rows was more than the number of columns overdetermined 

system of matrix, overdetermined system of linear equations and therefore, the corresponding 

matrix looks like a tall matrix. 
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So, the least norm, so the wide matrix is for the least norm and the tall matrix if you look at it, 

in which you have the number of rows and this you have the number of columns in which m 

less than n, this is for the least, this is for your least squares. So, just remember, it is useful to 

remember that least squares is usually associate with a tall matrix, least norm is associated 

with a wide matrix. 
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Now, so coming back to our least norm, what you can see is, now you have y1, y2, ym equals 

your matrix A, A1 bar, A2 bar, an bar, x1, x2. Now, basically if you look at the rank of this 

matrix, rank A, if you look at the rank of this matrix, which is less than or equal to the 

minimum of m, n, number of rows comma number of columns. 
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Which now m, given m less than n, this implies this is less than or equal to m, since we have 

m less than n. So, rank is less than or equal to m, which implies the rank of A is less than n, 

which essentially implies that rank of A is less than the number of columns. So, implies the 

columns are linearly dependent or not implies the columns are linearly dependent. That is, 



there exists a vector u bar such that a times u bar equal to, so that is, u bar, such that A times 

u bar is 0.  
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And in fact, we said, we defined such a vector u bar, this u bar belongs to the null space, this 

u bar belongs to the null space of A. So, this is basically your null space of u bar, belongs to 

the null space of the matrix A, which means that this wide matrix essentially has a non-trivial 

null space. So, for instance if you have a single vector, u bar, which belongs to the null space, 

then any multiple of u bar that is K times u bar also belongs to the null space and so on and so 

forth and then you will have a basis for the null space and so on and so forth. 
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So, the bottom line here is that, if you look at any solution, let us say you have Ax bar equal 

to y bar which is a solution. So, let us say x bar satisfies this. So, x bar is a solution, if x bar, 

if x bar satisfies this implies any Ax bar plus u bar is equal to Ax bar plus Au bar. So u bar 

belongs to the null space of A. Now, Au bar is 0, so this is equal to Ax bar which is equal to y 

bar. And therefore, this implies that, if x bar is a solution then any Ax bar, then any x bar plus 

u bar is also a solution then any x bar plus u bar is also a solution, implies there are, there are 

infinite number of solutions, infinite, there are infinite solutions to Ax bar equal to b bar. 

 The number of solutions to this system is infinity. So, in fact, if you compare it once again 

with the least squares, so when you have a tall matrix, the problem there is that there is 

typically no solution. The solution exists only if y bar lies in the column space of the matrix 

A. So, in the over determined case, there is no solution. In underdetermined case, typically, 

there is an infinite number of solution. Of course, once again we have to clarify, there is a 

slight caveat, if A has full row rank, that is if the rank, that is for any vector A this will have 

an infinite number of solution, I will just qualify this there are infinite solutions. The 

qualification here is if once again the rank of A is equal to m. 
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That is rank of A equal to m meaning that is implies A has A has full row rank. If rank of A is 

m, implies A has full, in there have been, in that situation this has infinite number of 

solutions, which means now we have to constrain the solution. So, we want to find a 

particular solution. Now, typically given the infinite number of solutions, how do we isolate 

the best solution? One of the ways to isolate the best solution is typically, especially in 



machine learning signal processing, it is usually seen that the best solution among these 

infinite number of the solution is one that has the minimum energy. 
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So, we want to find the minimum energy solution. Find the minimum energy solution. 

Implies minimize, remember, we said the minimum, if you represent a signal by a vector then 

the minimum is the energy is given by the norm. So, we minimize norm x bar, which again is 

similar to minimizing norm of x bar square. Because remember, if we are minimizing norm 

of x bar that is equal to minimizing the norm of x bar square. And this we are doing in order 

to, in order to constrain the solution. What do we mean by that?  

Because there is an infinite number of solutions, so you cannot determine a unique solution, 

therefore we have to impose additional constraints. One of the logical constraints that we are 

saying and practical useful constraint is to determine the signal or the classifier, which has the 

minimum energy and essentially that is what we are trying to do here, minimizing the norm, 

find the solution x bar, which has the minimum norm. And therefore, this problem can be 

formulated as minimize the norm of x bar subject to the constraint Ax bar equal to b bar.  
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So, what, what we mean by this is among all the solutions, find the one that has the minimum 

energy or the minimum norm or the least norm. Therefore, this is known as the least norm 

solution. Remember, previously, we had the least square solution, now we have the least 

norm solution. So, among all the solutions, find the one that has the least norm. This is the 

least norm solution. Among the infinite number of solutions, find the one that has the least 

norm, that is why this is the least norm problem. And remember, you can also equivalently 

formulate this as minimize norm of x bar square.  
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Once again this can be solved using the Lagrangian Convex. So, this is a convex problem this 

can be solved using the Lagrangian cost function. Except here you realize that you have Ax 

bar equal to b bar, which means A is m cross n there are m equations implies there are m 

constraints. 

And therefore, we have, we need m Lagrangian, some of you might be familiar with this 

theory, which implies that you need m, which implies that you will have the vector lambda 1, 

lambda 2, lambda n this is equal to lambda bar, this is the vector Lagrange multipliers. So, we 

can say this is the vector of Lagrange multipliers, because you have m constraints.  
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So, this is the vector of Lagrange multipliers. And therefore, you can formulate the 

Lagrangian for this as f of x bar comma lambda bar that will be minimize norm of x bar 

square plus the Lagrange multiplier vector lambda bar transpose times y bar minus Ax bar, 

norm of x bar square, I can write this as x bar transpose x bar plus I can write this as y bar 

minus Ax bar transpose lambda bar. A transpose b bar equal to b transpose A bar, which I can 

write as x bar transpose x bar plus y bar transpose lambda bar minus x bar transpose A 

transpose lambda bar.  
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Now, again from the optimization theory, at optimum we must have the gradient with respect 

to x bar this must vanish. Now taking the gradient, we have already seen that gradient of, 

what is the gradient again you might recall the gradient is nothing but the vector of partial 

derivatives take the derivative of f with respect to each component of x. So, this implies that 

x bar transpose x bar, the derivative is twice x bar plus y bar transpose lambda bar derivative 

with respect x bar is 0 minus x bar transpose A lambda, x bar transpose A transpose lambda 

bar derivative with respect to x bar is A transpose lambda bar equal to 0. 
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Which essentially implies that x bar is equal to half A transpose lambda bar. This is the 

property of the optimal solution least norm solution. And you can see a very interesting 

property if x bar, optimal x bar lies in the column space of A transpose, this is a very 

interesting property, the optimal x bar, x bar equal to A transpose lambda bar this shows that 

the optimal x bar has to lie in the column space of A transpose. So, x bar equal to half A 

transpose lambda bar implies the least norm solution has to lie in column space. of A 

transpose.  
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This is the interesting solution, column space of A transpose. And now, substitute this 

property in the constraint, we have y bar equals Ax bar equals A times half A transpose 

lambda bar is implies lambda bar equals twice AA transpose inverse y bar, which is possible 

if AA transpose is invertible, which once again is possible if A is full row rank. Remember 

for the least squares A transpose A is invertible, if A is full column rank. Here AA transpose 

is invertible if A is full row rank, that is rank of A equal to m. It implies rank A equal m. 
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And now, substituting this, so we have these two properties, so we have lambda bar equals 

twice AA transpose inverse y bar, and we have x bar equal to half A transpose A transpose 

lambda bar. Now substituting the expression for lambda bar this implies x bar equal to half A 

transpose, substitute for lambda bar twice AA transpose inverse y bar which is essentially 

equal to A transpose AA transpose inverse y bar, this is your least norm. And we can call this 

as x bar of LS. 

This is basically what we call as the least, let me just emphasize this, this is your least one of 

the other the counterpart of the least squares for underdetermined and this is the least norm, 

both these again have several applications and these are very useful to remember, the least 

squares and least norm. And you can see they are very related, least squares for 

overdetermined, least norm for under determined. And this is given by A transpose AA 

transpose inverse y bar, if A has full row rank. 
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Once again you can see the interesting property, which is if you look at this matrix, A 

transpose, AA transpose inverse, then if you multiply this on the right with A, this is equal to 

A transpose into AA transpose inverse this is equal to identity, which means A transpose AA 

transpose inverse acts as right inverse of A and this is termed as the pseudo inverse. 

We have seen the concept of pseudo inverse, but earlier we had seen the concept of pseudo 

inverse for a tall matrix that is given by A times A transpose A inverse and you multiply it on 

the left. Now, for a wide matrix the pseudo inverse is A transpose AA transpose inverse and 

this is basically a right inverse. So, this is a right inverse. So, in the wide case of a wide 



matrix, this is the pseudo inverse is given by A transpose AA transpose inverse. And this is 

basically you, are right inverse. 

So, this is pseudo inverse of A for a wide matrix. It is important to call it. Because you might 

see two definitions of the pseudo inverse and might get confused. There is no need to get 

confused, the earlier definition was for a tall matrix, this is for wide matrix. And the other 

interesting thing is A square, if A square is invertible, left inverse right inverse both reduce to 

the same that is A inverse and therefore you will have A inverse A equal to AA inverse equal 

to identity. So, for a square matrix both of these reduced to the same which is again A 

inverse, and that is also not very difficult to see.  

So, this is the least norm solution and this is essentially the right inverse. So, this is again 

another very interesting and it has several applications, so you have the least norm solution it 

is, the analog as I already told you the analog of the least square solution for a 

underdetermined system of equations. So, let us use, also good to remember that this is for a 

underdetermined, underdetermined system that is m less than n. Because again, once again 

remember that this is because you have an infinite number of solutions and therefore you 

want to constrain the system. Let us look at a quick example.  
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Once again, quick example. Always useful to do examples, so let us have a quick example, 

y1, y2 equals 1, 1, 1, 1 our favourite matrix 1, 2, 3, 4 and then you have x1, x2, x3, x4. So, 

this is your matrix A, you can clearly see A is 2 cross 4, m equal to 2, n equal to 4, m less 

than n. 
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Which implies this is an underdetermined solution. Therefore, one can again find the least 

norm solution. The least norm solution is given as A transpose AA transpose inverse y bar. 

Let us ask the first question what is AA transpose inverse. Let us find first AA transpose. So, 

that will be 1, 1, 1, 1; 1, 2, 3, 4 times 1, 1, 1, 1; 1, 2, 3, 4. 
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Which if you look at this as given by this matrix this will be 4, this will be 30, this will be 4. 

The cross elements will be 4, plus 3, 7 plus 2, 9 plus 1, 10 and AA transpose inverse equals 1 

over 120 minus 100 equals 20 times, 30 4, minus 10, minus 10. And once again if you 



calculate the pseudo inverse that is A transpose AA transpose inverse which is 1, 1, 1, 1; 1, 2, 

3, 4 times 1 over 20 into the matrix 30, minus 10, minus 10, 4. 
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You can evaluate this again this will be equal to 1, half, 0, minus half, minus 3 by 10, 1 by 

10, 1 by 10, 3 by 10. That is 3 by 10, minus 1 by 10, 1 by 10. So, this will be 1, half, 0, minus 

half; minus 3 by 10, minus 1 by 10, 1 by 10, 3 by 10. And therefore, the least norm the least 

norm solution is given as x bar least norm, sorry, I think I have been writing ls everywhere, I 

think this has to be x bar least norm.  

So, this is your x bar least norm, x bar ln, x bar ls you can think of it as the least squares 

solution. This is your x bar ln, that is the least norm solution. So, I think that makes sense. So, 

x bar ln equals the least norm solution equals this matrix that is your A transpose AA 

transpose inverse y bar which is 1, half, 0, minus half; minus 3 by 10, minus 1 by 10, 1 by 10, 

3 by 10 times y1, y2.  
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So, this will be equal to well, y1 times the first column of this matrix 1, half, 0, minus half 

plus y2 times minus 3 by 10, minus 1 by 10, 1 by 10, 3 by 10, and this is your least norm 

solution to that given system. So, this is basically your least norm solution. So, this is the 

principle of least norm solution, this is the theory of least norm solution. And as I told you 

this is again another very important concept of linear algebra, least squares, least norm, sort 

of two sides of the same coin. And this together constitute now the complete set of possible 

solution for a linear system of equations.  

So, linear a system of equations m equal to n number of equations is the number of 

unknowns, if A is invertible then you have a unique solution x bar equal to A inverse y bar. If 

m is greater than n, number of equation is greater than number of unknowns, then you have 

an overdetermined system of equations and which you use the least squares, and if you have 

m less than n, which is now the case that we have seen now, you have an underdetermined 

system of equations in which we use the least norm.   

So, together, this constitute the complete spectrum of solutions for the linear system of 

equations. Of course, there are minor cases where you can have things such as for instance, A 

not being full column rank, A not being full row rank and then in that case, you will have to 

the solution becomes a little more tricky, but those are special cases what I would like to call 

us pathological cases. But by and large this the unique solution given by the inverse least 

squares, least norm these constitute the complete spectrum of solutions to a linear system of 

equations following by enlarge.  



And these are important to know because these arise very, very frequently in practice. And 

these are again the one of the most significant applications of the principles of concepts of 

linear algebra that we have learned so far. So, let us stop here and we will continue in the 

subsequent videos. Thank you very much. 


