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Machine Learning Application: Linear Regression 

Hello, welcome to another module in this massive open online course and in this module, we 

want to look at yet another important application of least squares, and that is in machine learning 

in the context of what is known as a linear regression.  
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So we want to look at another very relevant and modern application of least squares in the 

context of machine learning, which is essentially, what is termed as linear regression and as I 

have told you, this is a very important application in the context of or in the area of machine 

learning or ML. Now, what is linear regression about to put it simply linear regression is 

basically prediction, prediction of a response using, these are technical terms, prediction of a 

response using what are known as explanatory variables. What is the meaning of this? 
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So let us say, let us illustrate it using a simple plot. So let us say, you have a lot of data and 

clearly you can see this data are correlated. So what I can do is, so this let us say I denote by x 

and y. This is what I am calling as my explanatory variable and y is what I am calling as 

response. 

And, clearly you can see that the explanatory variable and the response are highly correlated. 

One that is knowledge of the explanatory variable can help you predict the response of the 

system. And this can be done as you might have already guessed by fitting a model through this 

and this is essentially your model or what you are terming as your linear model. So we fit a linear 

model, so that given any new exclamatory variable, one can predict, one can obtain an idea or 

estimate of the response y had. 

This is essentially what regression is that is prediction of the response using these explanatory 

variables and this is essentially trying to fit a model or in this case, what is a linear model and 

this is essentially termed as linear regression. You are fitting a linear model to the explanatory 

variables to predict the response of the system. And You are trying to learn this linear model and 

that is the example and that is essentially what the machine learning aspect is about. 

So this is essentially the linear model as we have already stated. So this is a linear model. So put 

it more precisely. You have a response, which is why we are calling this as the response of the 



system. There are many things or you can call this as the output. You can also call this as the 

observation or you can also call this as the dependent variable. All of these are essentially. 
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And then you have a set of explanatory variables. So you have x1, x2, up to xn and these are 

your explanatory variables. These are the explanatory variables. And, now or these are also your 

independent variables. So these can vary independently. That is the idea. So you have the 

dependent variable. That is why these are essentially your independent variables. So we have the 

dependent variable and these are the independent variables. 

And now your regressor is essentially or predictor is given as y equals theta naught plus theta 1 

x1 plus theta 2 x2 plus theta n xn plus. So this is your regression model. So this theta naught, this 

is a fixed term. This is essentially a constant. This is termed as essentially your bias term or 

essentially this is also termed as the intercept. So this is, this is termed as the intercept and, these 

theta 1, theta 2, theta n including you can also call this as theta naught. These are your regression 

parameters or these are your regression coefficients and this epsilon is, this is your error. 

You can term this as your error term or your or essentially your disturbance term. So essentially 

your y is given as the sum, the linear combination, weighted linear combination of your 

explanatory variables. So, theta naught, which is the intercept plus theta 1 times x1 plus theta 2 

times x2 so on up to theta n times xn plus your epsilon where this quantity epsilon, this is 



essentially your modeling error or this is your disturbance and these thetas are essentially the 

regression coefficients. 

(Refer Slide Time: 8:27)  

 

So I can write this essentially as y equal to, it is not very difficult to see 1 x1 x2 xn cross theta 

naught, theta 1, so up to theta n plus epsilon or the error. And this essentially you can denote this 

by x bar transpose and this I can denote by the vector theta bar. So I can write this model in a 

compact form as x bar transpose theta bar, plus epsilon. 
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And this again, as I already told you, this theta bar, this contains the regression coefficients, and 

naturally now the prediction response can for any unknown, for any unknown. So given x bar, 

given the independent variables x bar or the explanatory variables x bar, once you know the 

model, response y can be predicted as y hat equal to x bar transpose theta bar. So this is 

essentially your prediction. So this is essentially the prediction corresponding to the, a new.  

So once you have, so once you fit the model, once you determine the regression coefficients, 

theta bar for any set of explanatory variables or for any set of, for any particular explanatory 

variable vector x bar, the response can be predicted as y hat equals x bar times theta bar, but it is 

important to first determine these regression coefficients. So that is, that is the thing that has to 

be done, because if theta bar is unknown, then it is not possible to predict. So one has to 

determine these regression parameters theta bar. So how to determine, That is the question. Let 

us look at some examples, some applications of this.  
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As I have already told you this is very important, linear regression, it has several applications. 

For instance, you can have y, in the context of y, this can be the price of a certain stock. This can 

be price of a particular stock, y can be the price and x1, x2, xn, these are the explanatory 

variables. These can be the prices of related stocks. These can be prices. So determine y that is 

the price of a particular stock that you are interested in from, or predict the price of y that is a 

particular stock from the prices of x1, x2, xn, which is essentially you can think of it as a stock 

market index or a basket of related stocks.  

So this is essentially a stock market or stock prediction, stock price prediction problem. This is 

one of the examples of applications. So you can, one can determine why using a linear regressor 

in terms of the explanatory variables, x1, x2, xn, which are the prices of related stocks. So this is 

a stock market prediction problem. This is a stock market prediction application.  

So another interesting application could be a sales prediction. So y can be for instance sales of 

related objects, such as for instance, you can think of sales of SUV vehicles, and x1, x2, xn, these 

can be for instance, sales of related objects, such as for instance, x1 can be sale of cars, x2 can be 

sale of bikes, and it can also be other things, such as for instance, xn can be the average income 

or GDP, or so on average income of an area or average income of a particular city or town. 



So if the average income is higher, naturally the demand for SUVs or demand for vehicles is 

going to be higher. So all of these, so there is also one has to also choose these explanatory 

variables carefully so that these are related, sufficiently correlated and can be sufficiently good 

indicators of the response. So this is essentially an application of your sales, sales prediction, or 

it is also termed as forecasting, sales prediction or forecasting.  
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And, another interesting application again, a finance application, this can be for instance, your 

portfolio risk, what is the risk in your portfolio and your x1, x2, xn, these can be various related 

parameters or various related quantities such as, for instance, interest rates or these can be for 

instance your interest rates, exchange rates, or stock prices, etcetera. Now, the question as we 

already said, so this is again, a portfolio optimization problem, or a risk optimization or a 

portfolio risk optimization.  

Now, once again, we can ask the question, remember how to determine the regressor 

coefficient’s theta bar. Because if you know theta bar, then given any explanatory variable 

vector, x bar one can predict the response y. Now, for that, we start with a set of training data 

that is responses and corresponding explanatory variables. 
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So we start with, the answer to this is start with training data that is, you have a bunch of y bar 

y1, x bar 1. One set of training data and then you have, then you have y2, x bar 2 so on and then 

finally you have ym, x bar m. So this is your m points, or your set of m training data vectors, or 

training data samples. And now one can again construct the model. So I can write y1 as well 

theta naught, this is the first training vector, theta, theta naught plus theta 1 x1 1 plus theta 2 x2 1 

plus so on and so forth, theta n xn1 plus the error. 
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Which I can write, of course, in compact form as once again, 1 x1 1 so on, xn 1 times theta 

naught, theta 1 so on up to theta n plus epsilon error 1, which is essentially, you can think of this 

as x bar transpose 1 times theta bar plus the error. Similarly, one can express y2 as x bar 

transpose 2 theta bar plus the error and ym, the mth point as x bar transpose m. So these are your 

regression. 
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These are your regression models or these are basically the corresponding model for the output. 

So now you can write this as the vector, y1, y2, ym as we always do, write it in compact vector 

notation, as I have already told you and this is where the linear algebra comes in. X bar transpose 

1, x bar transpose 2 so on x bar transpose m times theta bar plus epsilon bar, which is the error 

comprises of the errors epsilon 1, epsilon 2, up to. 

So this is essentially your y bar. This is essentially your matrix x, which contains the training 

vectors of explanatory variables. This is your vector x epsilon bar, which is the error. And 

therefore, I can write this as y bar equal to x theta bar plus e bar. So this is the model, or this is 

your model for the training data. So these are basically the regression outputs corresponding to 

the explanatory, training explanatory vectors, the explanatory training vectors and, the training 

responses.  
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And now the idea is to determine the theta bar, which gives the best fit for or which gives the 

best fit for y bar that is determine theta hat as the best vector theta bar, the best set of regression 

coefficient that minimize the error between the training responses and the explanatory or the 

training explanatory vectors. 

And now you can naturally see, this is again a least squares problem. This is again and you can 

now immediately see how powerful the applications of least squares can be, it can be applied 

anywhere. Why are this linear regression model can be applied now anywhere else, sales 

predictions, stock market forecasting, portfolio risk optimization, so on and so forth. So theta hat 

again is given where the solution to the least squares problem that is it is given by x transpose x 

inverse x transpose y bar. 
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So this is essentially your, this is essentially your theta hat, which is your or we can simply call 

this theta bar, which is your regression coefficients, or you can also call this as the regression 

parameters. So therefore thus essentially one can use once again, the least squares paradigm, that 

you have developed so far and determine the regression parameters or the regression coefficients 

theta bar, which essentially includes, which essentially is basically the vector, if you remember, 

this is the vector theta naught, theta 0, theta naught, theta 1, theta 2 up to theta n. So it also 

includes that intercept term theta naught. 

And therefore, now you can see regression or linear regression. This is a very important aspect of 

machine learning, which in turn has several applications in various areas such as for instance 

stock predictions, sales forecasting, portfolio, housing price prediction, traffic prediction, 

wherever you can think of prediction, forecasting, or basically determining a response or getting 

an idea of response based on a set of explanatory variables, which are highly related to this 

response. 

One can use linear regression and naturally in all such areas, the least squares paradigm that we 

have looked at. Of course, linear algebra has a very important role to play and in particular, the 

least squares can determine the particular regression model by essentially determining the 

regression coefficients, or the regression parameters, and once you define, I mean, once you 



determine the regression coefficients or the regression parameters, that in turn gives you the 

regression model. 

So essentially least squares can be used to determine that regressor. So therefore, it is again, one 

of as I have already told you a very, very important concept that is this problem of least squares 

and solution, the least square solution has wide ranging applications. We have looked at yet 

another application of the same in the context of machine learning and particular linear 

regression. So let us stop here and continue this discussion in the subsequent modules. Thank 

you very much. 


