
Applied Linear Algebra for Signal Processing, Data Analytics and Machine Learning

Professor. Aditya K Jagannatham

Department of Electrical Engineering

Indian Institute of Technology, Kanpur

Lecture No. 20

Computer Vision Application: Face Recognition, Eigen faces

Hello, welcome to the another module in this massive open online course. So, in this module let

us look at another interesting application of linear algebra in the context of machine learning this

is basically termed as Eigen faces.

(Refer Slide Time: 0:28)

So, let us look at another application this is essentially you can think of this as an extension of

PCA to face recognition. So, this is a very popular and significant algorithm. This is an

application in the context of as I already told you machine learning or essentially what is the

abbreviated as ML. And this is basically you can think of this as extension of PCA for face

recognition applications. So, this is an application specifically in the context of face recognition

this is termed as Eigen faces. And what do we mean by this Eigen faces.

(Refer Slide Time: 1:49)

What is the procedure for this Eigen faces algorithm? Let us consider a typical face image for

instance one can say a typical I am drawing a carriage here, a typical face image comprises of

pixels you can think of this as basically comprising of so this is a image of my cartoon image of

a face. And this comprises of essentially each of these is a pixel. So, this is basically a face

image, a frontal face image and let us say there are mc rows of pixels. Let us say there are mc

rows of pixels. And there are, there are mc columns and there are mr rows of pixels in this facial

image.

(Refer Slide Time: 3:23)

So, you have in the face image mc equal to number of columns of pixels mr equal to number of

rows of pixels. And therefore, total number of pixel this is given as mc times mr. mc into mr let

us call this as m, m is the total number of pixels. So, now each image xi each image now you see

each image can be represented by the matrix which contains a pixel value. So, each image can be

represented by the matrix. So, the ith image can represented by a matrix Xi, this is essentially the

ith image. This contains of size as I told you mr cross mc this will be of size mr. Where mr is a

number of rows mc is the number of columns mr cross mc so each image xi is essentially a

matrix.

So, an image is essentially a 2 dimensional signal which contains certain number of rows, certain

number of column which contain basically the pixel values. So, let us see these columns are xi1,

xi2, xi mc these are the columns. So, this is the ith image xi xc this is a matrix of pixel value.

This is mr cross mc and it must be clear but let me write it this is the matrix an image is a matrix

of pixel values. And if you look at this, these are the columns. Columns of pixel values there are

mc column size of each column mr cross 1. So, each column in this is basically of size mr cross

1.

So, if you look at in image what we are saying is let us take a simple example let say we have a

256 cross 256 image is basically has 256 rows and 256 columns which means essentially matrix

of say 256 cross 256 it has 256 rows and 256 columns of basically pixel values. So,, you can

arrange this as a matrix comprising of 256 columns each column has 256 elements. The reason

we are doing is because now we want to form a vector.

(Refer Slide Time: 7:11)

So, from this xi from xi which is the ith face which corresponds to basically ith face in you think

of this as you are training data set. ith face or ith face in your set. ith face in image set. Let us

think of it that ith face in the image set. So, you can now from xi obtain vector x tilde i by

stacking the columns that is we have x tilde i. You stack the columns of xi one below the other.

So, you have xi1, xi2, stack the columns one below the other or one above the other. You have

mc columns each is of size m cross 1. So, you are basically stacking the columns.

So, this also be fairly easy to understand this is a standard operation. This is also known as the

vec operations so what you are saying is xi tilde and mathematics is also known as the vec

operation. So, you take a matrix and stack its columns to obtain a vector. And naturally this x

tilde i is going to be it contains basically you have mc columns each of size m. So, this is going

to be mc into mr cross 1 vector but mc into mr equal to 1. So, this is going to be mr cross 1 and

this is going to be a vector of essentially all remember that is going to be your vector of pixel

values.

(Refer Slide Time: 10:11)

And consider now m images. So, we are going to be so we are obtaining this vector from the

image which is essentially a matrix of pixel values. We are obtaining this vector of pixel values

and now we are going to illustrate the procedure for face recognition. So, now let us say you

have m images in your face set, your face image set or facial image set. So, you have X1, X2, up

to Xm and corresponding to this so these are the face images.

So, these are your facial images and corresponding to these you have x1 or x tilde 1, x tilde 2 so

on and x tilde m which are the corresponding vectors. And then, now what we do is, how the

question we want to ask is given a new image, a new face given or given an image, given a facial

image x, given a new facial image x tilde. How to recognize this? That is essentially how to map

it to your existing session that is which face does this correspond to? Does it correspond to x1,

x2? Which one of the existing face is does this correspond to.

So, we have an existing a vast database. So, let us think you have this database of faces and now

you have a new face. Let us say this belongs to some person you want to identify, now to which

facial image in your database does this new face correspond to and see that clearly this has a lot

of applications and lot of whenever you want to identifies some person. The, you want to identify

an unknown person from an image of his or her face you call upon this algorithm. So, and this is

vast applications you can imagine. So, this is your, you can think of this as essentially or

database, your database of facial images.

(Refer Slide Time: 13:28)

Now the Eigen faces algorithm proceeds as follows remember we are talking specifically about

the Eigen faces algorithm. So, we will talk about the procedure for the Eigen faces. So, we will

talk about the procedure for Eigen faces as follows. So, what we do is similar to PCA I hope all

of you remember the principle component analysis algorithm that we have describe before. You

form the mean vector of these facial images. So, you have this 1 over n this should be n. this is

the size of your database. So, you have 1 over n summation i equal to 1 to n xi tilde this is the

mean you can also remember they are also called as the sample mean.

(Refer Slide Time: 15:04)

And from all the images subtract the sample mean. So, you obtain from each image xi you obtain

x bar i equal to x tilde i minus mu bar. So, we subtract the sample mean so we subtract the

sample mean and then we from the covariance matrix. Now from the covariance matrix we form

the covariance matric rather the estimate of the covariance matrix which is given as R equal to 1

over n minus 1 summation i equal to n xi bar xi bar Hermitian. So, this is basically your

covariance this is basically your covariance matrix. So, this is essentially your covariance matrix.

(Refer Slide Time: 16:26)

Now once you form the covariance matrix we form the Eigen value decomposition of the

covariance matrix and that is given as V you remember the Eigen value decomposition that is

given as V lambda V transpose remember this is an Eigen faces algorithm. So, there is some

relation to the Eigen values and Eigen vectors in fact what we are going to see the Eigen faces

algorithm as the name implies has a very deep relation to the Eigen values and Eigen faces.

And what is the relation this is the relation. So, we talk about the Eigen values of this covariance

Eigen. So, this is basically the other covariance matrix and this is basically the Eigen value

decomposition. We have the covariance matrix this is basically our Eigen value decomposition.

And from this essentially we do ease we find the Eigen vectors largest principals of, we find the

Eigen vectors remember similar to PCA find Eigen vectors v1 bar, v2 bar, vp bar this correspond

to the largest principal components.

Or you can think of this as the direction corresponding to the are just principal components. You

find basically these are the Eigen values corresponding to the P largest Eigen vector or these are

the Eigen vectors corresponding to the P largest Eigen values of the covariance matrix. These are

Eigen vectors corresponding to P largest Eigen values. P largest Eigen values of R which is the

Eigen vectors corresponding to the P largest Eigen values of R which is basically your

covariance matrix.

(Refer Slide Time: 19:14)

And now what we do is we form the principal component vector for each image x bar i form the

principal component vector. And we know this is given basically by taking the objection of each

facial image x bar i along the principal direction along the principal components. So, essentially

what we do is now we have the w bar i which is basically given as you take the projection of v1

bar this is your v1 bar transpose, v2 bar transpose, vp bar transpose times your x bar.

Or essentially we are saying this is your vt transpose x bar i and this is your w bar and this will

be a P cross 1 vector. And these are the principal components corresponding to image principal

components for you can think of this principal components for the face i, principal components

for the ith face. These are the principal components for these are the principal components

corresponding to face i and remember this matrix v is v equals again v1 bar, v2 bar, vp bar which

you can clearly see each vector is a size of m. So, this will be m cross P matrix.

(Refer Slide Time: 22:05)

And now so this is basically you can call this as the weight vector for image, weight vector of

face i. This is the weight vector for face this is the weight vector for face i. So, you can see this is

also basically nothing but our presentation of face i, a compact a compressed P dimensional

representation remember that is what PCI gives us what PCA does is it determines the principal

components corresponding to the projection of each facial of each data vector along the direction

which have the largest variance.

So, this is a vector containing the P you can think of it as the vector correspond containing the

principal components of the face i or the significant components or the largest or the components

of the face i that has the largest variance. This is a compressed version of that rather than storing

that and using that large dimensional that m dimensional vector remember each face image if

you think about it 256 cross 256 image face image of pixels.

So, if you represent that as a vector that will be 256 times 256 which essentially 2 to the power

of 16. So, that is a large vector we are taking the significant directions of the significant

components of that along the Eigen vectors of the covariance matrix corresponding to the largest

Eigen values calling that as principal components and this is basically compressed representation

of that facial image.

(Refer Slide Time: 24:08)

And now we similarly form so now we similarly form from your x1 bar, x2 bar for these images

in your data set we form the weight vectors we form the weight vectors w1 bar, w2 bar, w2 bar

these are the weight vectors corresponding to the images, facial images in that database. Weight

vectors or facial images in the, these are the weight vectors for the facial images in the database.

And now how to perform the facial, so these are the weight vectors for the n images.

In your database you have n images and now what is the procedure for how do we perform facial

recognition. As we say let x tilde i be the new face that is not yet identified. X tilde i be the given

face image.

(Refer Slide Time: 25:46)

Corresponding to x tilde i we subtract the mean. Now from x tilde i we obtain x bar i by x from x

tilde we obtain x bar as x tilde minus mu bar that we subtract the mean.

(Refer Slide Time: 26:35)

Once again now find the weight vector corresponding to x bar that will be given as w bar which

is V transpose times x bar. So, you are finding the principal components corresponding to x bar

and this is the weight vector for the unknown face. So, this is the weight vector for the unknown

face. This is the vector corresponding to the unknown face and now compare this with the weight

vector so of the images, compare this with the weight vector of the images in your database.

Compare this w bar n for images in the database. And the face image from the database with the

closest weight vector w bar is the recognized image essentially that is the idea.

(Refer Slide Time: 28:25)

So, you compare it, so you form the distance di of the weight vector of this unknown face to each

vector in the, so this is the distance. This is the l2 norm which is essentially the distance or you

can think of this as the Euclidean distance this is your essentially or distance matrix or this is

essentially the distance of the weight vector w bar i from weight of each image i in the database.

And then find the least, find the image i we find the face image i with the least distance implies

find i tilde equals arg min which is essentially the arg minimum argument of di that is the

distance di the i such that the distance di is minimum and i tilde this is essentially your

recognized face. This i tilde which basically corresponds to the minimum distance that is the

weight vector which has the minimum distance weight vector i w bar i which has the minimum

distance to the weight vector w bar of this new facial image that is essentially the recognized

image. So, this is your Eigen faces algorithm for face recognition.

So, this is essentially basically your whole thing that we described so far is basically what we

call as the Eigen faces. Eigen faces algorithm this is basically the Eigen faces algorithm for face

recognition. The only small change here is going to be the fact that see sometimes this image this

new image of a new face and practical, practice that might also arise frequently that is this facial

image of this unidentified person might not actually be present in your database. So, it might not

correspond to any facial image in your database.

(Refer Slide Time: 31:15)

So, typically we compare this distance with a threshold. So, di, so compare di or this di tilde

rather that is the minimum di that you found di tilde with some threshold epsilon. If this

minimum distance di tilde is greater than epsilon, then it essentially means that minimum

distance that has no face in the database is a close match. Then it does not match with any of the

facial images in the dataset. So, this typically means that this means this implies that the

unknown face, this implies that the unknown image does not correspond to any face image in

existing database. It does not correspond to any unknown image because it is not particularly

close to any of the images in the database.

On the other hand, if this di tilde is less than equal to epsilon else if di tilde is less than epsilon,

then this e matches to face i tilde. Then it matches to face i tilde. So, this match, so essentially

what you do at this point is you announce face i tilde from the dataset as the closest facial image

that is unknown image you announce face i tilde. Essentially, you announce that i tilde matches

to that face i tilde or essentially what you can do is instead of taking the in fact there can be

variations of this instead of taking the facial.

If you have a large database sometimes what might happen is that it might closely match with the

images of several faces. So, you might not just take the i tilde which has the least distance but

you might take a certain number let say 3 or 4 or a certain number k of images which have the

lowest distance corresponding to weight vector of this new unidentified face. And then you do a

manual search or you probably do a more an expert search, you call in a next part of something

of that sort and then try to better identify or more carefully identify which of this faces in the

database does this space correspond to or does it not in fact correspond to any face at all.

So, these are all variations of this algorithm. So, essential idea here is that you are taking this

large database which potentially comprises of a large number of facial images and more over

each facial image itself we consider the modest resolution of 256 cross 256. This facial high

resolution facial images now a days because of the improvement in the resolution of the cameras

this can be 512 cross 512 or 1024 cross 1024 and so on which means the size of each vector can

be huge.

So, you have a large database of faces each data point has a huge size and now how do you take

a new facial image and essentially announce compare it or essentially check with which image,

facial image in your dataset this image, this new facial image matches or which the image in

your dataset to which this new image corresponds. So, this is the Eigen faces algorithm which

can be used which is essentially a machine learning application of the principals of Eigen values

and Eigen vectors that we have learned so far.

It is an interesting application of and essentially PCA principal components analysis. Essentially

a very interesting application of I would say linear algebra and PCA in a practical context of,

practical example of facial recognition. So, with this let us stop here and we will continue with

other such interesting applications as well as new concepts in the subsequent modules. Thank

you very much.

