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Hello, welcome to another module in this massive open online course. So, in this module, let 

us start looking at another very important concept in analysis, which arises frequently in 

linear system analysis and that is of Gaussian random variables and we are going to see that 

linear algebra linear system analysis is very intricately tied to the properties and analysis of 

Gaussian random variables and especially Gaussian random vectors. 
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So, let us look at this very important so, there is another very important, what is the Gaussian 

random variable? The Gaussian random variable is simply if you look at it, many of you 

might already be familiar it is a random variable, let us say if this is our axis, this is our x-axis 

and this peak occurs at what is it is called, it is mean that is mu and this spread is controlled 

by the variance. The spread depends on the variance that is sigma square.  
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And the probability density function so, the PDF or what we call as the Probability Density 

Function are the Gaussian random variable is given as f of x of x this is equal to 1 over square 

root of 2 psi pie sigma square e raised to minus x minus mu whole square divided by 2 sigma 

square for minus infinity less than x less than infinity.. 
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And this quantity mean as we said this is where the peak occurs and this is also the expected 

value of the random variable that is, we look at the expected value of the random variable that 

is equal to mu and if you look at the expected value of x minus mu whole square that is equal 

to sigma square this is termed as the variance. So, this is essentially your mean and this sigma 



squared is termed as the variance of this Gaussian random variable and why we are 

considering this Gaussian random variable as I have already said. 
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This is almost whenever you look at the applications of linear algebra and linear system 

analysis, Gaussian random variables, Gaussian random vectors arise very frequently in 

practical analysis of linear systems. For instance, if you look at any system communication 

system, signal processing system noise is frequently modelled as a Gaussian random variable 

or Gaussian random vector. If you look at Machine Learning, the different classes, the 

samples from the different classes can be modelled as being obtained from Gaussian 

processes, the samples are as though the different classes can be modelled as essentially your 

Gaussian random processes. 

So, this concept of Gaussian arises very frequently very important arises very frequently in 

linear system analysis that is applications of linear algebra. For example, noise in 

communication or signal processing or for instance in Machine Learning the different that is 

when you talk about ML, different classes can be Gaussian, the objects belonging to the 

samples belong into different classes can be modelled as basically Gaussian in nature.  

So, this frequently arises very frequently arises in analysis of linear systems and whenever, 

we talk about the practical applications of linear algebra, we have to inevitably talk about 

Gaussian random variables, Gaussian random vectors and Gaussian random processes. 
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Now, a Gaussian random vector is basically a collection of Gaussian random variables. So, 

Gaussian random vector is also termed as basically the correct name for this and the 

technically correct name for this is a multivariate Gaussian where, we have the vector x bar 

equals x1 x2 xn and these are jointly Gaussian with the mean that is mu that is we have 

expected value of x bar equal to 0, expected value of x bar equal to mu bar and the covariance 

matrix is what is termed as a covariance, expected value of x bar minus mu bar expected 

value of x bar minus mu bar transpose this is equal to R so, this is the covariance matrix this 

is what is termed as a covariance matrix. 
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And the probability density function has given us f of x of x bar this will be equal to we are 

not talking about the multivariate Gaussian f of x of x bar which is equal to 1 over square root 

of 2 pi. Since, this is an n dimensional vector 2 pi raised to the power of n times the 

determinant of the covariance remember this is the determinant e raised to minus half x bar 

minus mu bar transpose inverse x bar minus mu bar so, this is the PDF of the multivariate 

Gaussian, PDF of multivariate Gaussian, and for mu equal to 0 natural if mu equal to 0 we 

have expected value of x bar equal to 0 and then, the covariance simply becomes expected 

value of x bar x bar transpose equal to R. 
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And now, if you look at the elements of R expected value of x bar x bar transpose equal to 

r11 r12 r1n r21 r22 so on, you will first see this a symmetric matrix and each rii diagonal 

element is nothing but the expected value of xi square that is the variance of xi and rij equals 

rji equals expected value of xi times x. This is basically what, we call as the correlation right 

or this is basically the correlation between the two random variables xx and x here. So, these 

are the off diagonal so, these are the diagonal entries and these are the off diagonal entries. 
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Now, if the off diagonal entries are 0 for a special case now, consider a special case that is we 

have expected value of special case first consider mu equal to 0 and then, we have expected 

value of x bar x bar transpose is of the form sigma 1 square sigma 2 square sigma n square 

that is, this is basically diagonal in nature that is covariance matrix R, R is diagonal in nature 

which means these different components of the vector the different random variables are 

uncorrelated because, if you look at expected value of xi to xj for i not equal to j that is equal 

to 0. So, this implies that expected value of xi into xj equal to 0 for i not equal to j which 

implies for any random variable xi xj are this implies 0 uncorrelated. 

Now, for Gaussian this specifically implies only because it is Gaussian also implies xi 

comma xj are independent. So, diagonal covariance matrix for Gaussian only for Gaussian 

remember, not for any general variable because, we are considering a Gaussian random 

vector if the covariance matrix is diagonal, it implies that, the different components x1 x2 xn 

these random variables these are uncorrelated and because, they are Gaussian jointly 

Gaussian, it also follows that, they are independent. 
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And further special case is when, we have further when all the variances are equal for R equal 

to expected value of x bar x bar transpose, this is diagonal and the variances are equal that is 

this is proportional to identity, covariance matrix is proportional to identity, this implies 

something very interesting that is each expected value of xi square equals sigma square and 

the expected value of xi is equal to 0 for i not equal to j implies of course, the xis are 

independent and all the xi have same mean or have identical mean slash variance identical 

mean and variance that is  mean equal to 0, variance equal to sigma square. 
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Therefore, we have these are known as we termed that as x1 x2 xn us termed as was  such a 

situation x1 x2 xn are termed as i i d that is these are independent and identically distributed 

Gaussian random variables, correct. Identically so, these are termed as i i d that is these are 

independent identically distributed Gaussian random variables. x1 x2 xn are independent 

identically distributed random variables and then in that, that is all of them have the mean 0 

variance sigma square, they are uncorrelated because, their Gaussian or jointly Gaussian, it 

also means they are independent and if you look at the covariance that is essentially 

proportional to identity it is sigma square times the identity matrix. 

So, let us stop here and we will continue our discussion in the subsequent modules. Thank 

you very much.  


