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Hello and welcome to NPTEL MOOC on Electromagnetic Waves in Guided and Wireless
Media. 

This is our continuation of the previous module where in the previous module we, you know,
discussed the oblique incidence of a uniform plane wave from medium one to medium two.
Both medium one to medium two were assumed to be perfect dielectric. We will continue to
assume that one, and we had set up the essential equations, but we did not derive the final
expressions for reflection coefficient and transmission coefficient, which is what the goal of
this module is, right? 
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So we begin by, you know, looking or recalling this figure that we had drawn earlier. So there
are two media, which is supported by z = 0 plane. Okay. So the normal to the interface is
basically along the Z direction and we were considering what is called as transverse magnetic
polarisation in which the electric fields are given in this particular manner. The magnetic field
in,  you  know,  associated  with  electric  field  E1 would  be  coming  out  of  this  board
perpendicularly and then magnetic field H3 would also be coming out in the same manner
perpendicularly.

However, the magnetic field for the electric field E, sorry, this is E2. The reflected field is E2.
So for that E2, the magnetic field H2 would be into the board. So this would be out of board
for the case of H1 and H3 whereas H2 will be into the board. The directions are chosen in this
particular  manner  so  that  the  incident  field  which  is  associated  with  E1 and  H1,  the
components of that particular plane wave. When you do a right angled, you know, rotation
starting from E1 along H1 if you curl around, then the direction of the propagation of the wave
is towards this particular medium, right? So you have this E1 and H is coming out, so the curl
rule, the right-hand curl rule will give you a wave which is propagating in this direction. 

Similarly with the assumed E2 direction in this manner and H going in to the wave, so you
have this E2 in this manner and H going into this one. So if you now turn the screw kind of a
thing right-hand rule, it will tell you that the wave is propagating away from the interface.
Okay. So the directions E1 and E2 as well as E3 and H3 were all chosen such that the wave is
propagating  in  the  incident  medium.  The  incident  wave  is  propagating  towards  the  +z
direction; the transmitted wave is propagating in the +z direction whereas the reflected wave
is propagating in the -z direction. 

Now with the help of this diagram and the fact that we know boundary conditions mean that
tangential electric fields and tangential magnetic field in this case must both be continuous
across  the interface,  you can write  down two equations  and with two equations  you can
actually obtain the ratios of the transmitted electric field amplitude to the incident electric
field amplitude. This ratio we will call it  as a transmission coefficient. Similarly, you can
write down the ratio  of the reflected electric  field amplitude to the incident  electric  field
amplitude and we will call this as a reflection coefficient. Okay. 

There are three, you know, electric fields in this problem. You have E1,  E2 and E3. However,
E1 and H1 are usually fixed by the input conditions because it is coming from some source and
we know what is the power that the incident wave is usually carrying, so it is necessary or it
is  sufficient  only  for  us  to  just  calculate  the  reflection  coefficient  and  the  transmission
coefficient. The remaining components or the remaining metrics of this problem such as the
reflected  power,  transmitted  power,  and  if  at  all  there  is  a  power  loss,  they  can  all  be
calculated with the help of these two coefficients. 
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So we have shown what the components, the tangential components are going to look like.
Okay. So I won’t repeat the discussion there, but I’m going to write down the tangential
electric field here. What I would suggest is that you observe the figure carefully with the
angles θ1, θ2 and θ3 taken. We also know, of course, how θ1 and θ3 are related. θ2, which is the
angle of reflection, is basically equal to the angle of incidence from first Snell's law, and this
θ3 and θ1 are themselves related by the second Snell's law. 

Now what we do is before we write down the set of equations, what we are going to do is to
make a small change in the notation. Because we know θ2 and θ1 are essentially equal to each
other, we are going to rename the angles.  We will  call  this  as θi meaning that  this  is an
incidence angle, θr for the reflected angle, which of course is equal to θ i, so we don’t bother
about that anymore, and this angle we will call as θt, t standing for transmitted wave. Okay. 
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So this is with these new angles that we have written. This is just to avoid θ1, θ2 and θ3 kind of
this one, but that will give you the idea that this is concerned with an incident, reflected, and
transmitted wave. We have relabelled the angles. Okay. With that, the set of equations, the
tangential electric field on region one which must be equal to the tangential electric field in
region two at the boundary surface z = 0 and for all values of x turns out to be E1 Cos θ1 + E2

Cos θ2 must be equal to or sorry, we will write this as 1 and 2, right? So we are going to write
this as E1 Cos θi + E2 Cos θi only because θr would essentially be equal to θi and then I have
E3 Cos θt. Okay. 
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If you are worried about what happened to the phase factor namely this e-jk.r corresponding to
the incident wave, and reflected wave, and transmitted wave, we have shown that for the



boundary conditions which have to be valid at the entire z = 0 plane and at any x and y point,
right, on the plane, we know that these phase factors essentially have to be equal. In fact,
equating these phase factors gave us Snell's law. So I hope where this equation is coming
from is very clear. Okay. 
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Now  what  about  the  magnetic  field?  Well,  magnetic  field  will  be  all  tangential  to  the
interface, okay, so that you have H1-H2 to be equal to H3. In terms of E, we can write H1 as E1

divided by η1 where η1 is the medium impedance. η1 is square root of omega, sorry, square
root of μ by ε. Correct? So this is square root of μ by ε, and H2 is given E2 divided by η1

again. Why η1 again? Because both incident and reflected waves are in the same plane. Okay.
So this would be equal to E3 divided by η2. That is for the second medium. Okay. 
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Now that we have these, you know, equations with us, I will not simplify them further, but I
hope that you are able to take this as a small exercise and then show that the ratio which we
will  call  it  as ΤTm,  okay, so this  is  ΤTm as  the ratio  of E3 to  E1,  okay, and call  this  as a
transmission  coefficient.  So  this  we  will  call  as  the  transmission  coefficient,  which  is
basically the amplitude ratios. Okay. So you have to keep in mind that this is amplitude ratio,
not power ratio, and you can show that this expression can be written as 2 η 2  Cos θi divided
by η1 Cos θi + η2 Cos θt. Okay. 
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So I would encourage you to show that this equation what we have written, you know, comes
out all right. So you can check that we have done our, you know, this one. So you have η2 Cos
θ1. So hopefully everything checks out correctly and show that this is the equation. Okay.



Now you can also show that the reflection coefficient, which would be the ratio of E2 to E1,
which further can be written as (E2/E3) times (E3/E1), and this particular thing we already know
to  know and  you can  find  out  E2/E3  by subtracting  these  two equations:  equation  1  and
equation 2 and then adjusting the ratio, I mean, adjusting the equations to get this required
ratio, and we can show that this is basically given by (η2 Cos θt - η1 Cos θ1) divided by (η2

Cos θt = η1 Cos θi). Okay. 
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Now observe this equation very, very carefully. Okay. If I rewrite this equation by saying that
this  is  basically  like η  of  the second medium corresponding to  Tm minus η of  the first
medium corresponding to Tm polarisation divided by η2

Tm + η1
Tm. What will you observe?

You'll actually think that this is equivalent to a transmission line whose input characteristic
impedance  is  η1

Tm and  it  has  been  terminated  in  a  load,  okay, whose  impedance  is  η2
Tm

provided you associate this η2
Tm as the medium impedance η2 times Cos θ2 or rather Cos θt

and you identify ηTm as η1
 Cos θi.
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So  depending  on  the  angle  of  incidence,  if  you  just  identify  the  transverse  magnetic
impedance, you know, wave impedance or the intrinsic impedance of the second medium to
be η2 times Cos θt and η1 times Cos θi, then the equation that we have written for ΓTm follow
very  straightforwardly.  It  looks  like  we simply  have  this  as  η2

Tm.  This  is  like  reflection
coefficient of a normally incident wave. Alternatively, this is equivalent of a transmission line
in  which  the  characteristic  impedance  of  the  terminating  or  the  load  impedance  of  a
transmission line is η2

Tm,  which is basically η2 Cos θt and connected to an infinitely long
lossless transmission line having the characteristic impedance of η1

Tm. Okay. So this situation
that we have drawn here in the characteristic in the transmission line is exactly equivalent to
the plane wave that we have been considering. So this is the one-to-one correspondence up
here. Okay. 

Now we will not derive the corresponding equations for the TE polarisation. TE polarisation
is also called as perpendicular polarisation. Okay. The reason is very simple. You will see
once I draw the picture. As before, we will assume that z = 0 separates the two interfaces,
medium one and medium two, sorry, separates two medium with an interface at z = 0. This is
your x-axis, z-axis. 
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Now as before, you will have an incident wave; you will have a transmitted wave and then
you will have a reflected wave, each of them having their own k1, k2, and k3 vectors. Okay.
And instead of the kinetic field being transverse everywhere, we will assume that it is the
electric field which is coming out of plane. So this would be E1. Somewhere here let’s say
this would be E2 and here this would be E3. And in this case, we will assume that all these
electric field components associated with the incident, reflected, and transmitted waves are all
actually coming out of this particular board. Okay.

(Refer Slide Time 12:18)

And then you have to adjust the directions of H accordingly. So if you take the direction of H
to be say H1 in this manner, you can show very clearly that if E1 is coming out here and this is



your z-axis, so you can see my thumb. Then you take this E x H. Then the corresponding
vector will be perpendicular and that vector will be the incident k1 vector. 

Similarly, if my electric field E2  is coming out and I want the wave to move away from the
interface, I need to have electric field and the magnetic field in this manner so that its electric
field rotated on to the magnetic field will  cause the wave to go away from the interface.
Okay. So the magnetic field will be located in this manner. Of course, in this case, the electric
field,  sorry, magnetic  field associated  with this  medium will  also be located  in  the same
direction as H1. Okay. 

The equations,  I will just write down the tangential  boundary conditions or the equations
resulting from the boundary conditions of tangential continuity. So I get E1 + E2 to be equal to
E3 because everywhere this is parallel to the interface and however, for the magnetic field,
what we get is (-E1/η1) Cos θ1.

So this clearly, E1/η1  is basically H1 and you are looking at H1 Cos θ1 or Cos θi in our angle
that we were considering and because this tangential component of H1 is actually along -x
direction, you get a - sign here. Okay. Apart from that one, the rest is quite simple. So you
have (E2/η1) Cos θ1, which would be equal to (-E3/η2) Cos θi and θt. 
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Now without, you know, solving the equations, we can already see a similarity between this
set of equation and the previous equation that we wrote, right? So you had E1 Cos θi there.
You had E1/η1 here.

So if you simply, you know, rewrite this equation, instead of that way you write this as E1/
(η1/Cos θi)  + E2/(η2/Cos θi),  which would be equal  to -E3/(η2/Cos θt)  and associate  these
denominators with transmission lines with appropriate TE impedances. This is η1

TE
, which by

definition will be equal to η1/Cos θi, okay, and this will be terminated in a load impedance,



which is actually the intrinsic impedance or the wave impedance of the second medium given
by η2

TE, which is actually equal to the impedance η2/Cos θt.

(Refer Slide Time 15:07)

Of course, θi and θt are still related in the same manner as Snell's law, so there is no change.
So what you should understand is that this scenario of TE polarisation can be made exactly
analogous to a transmission line that we have already seen with the impedances being η1

TE for
the main transmission line. That transmission line is terminated in the load whose impedance
is η2

TE. 

So from this it’s very easy to write down the expression for for ΓTE. This would be η2
TE - η2,

sorry, η1
TE divided by η2

TE + η1
TE. Okay. You can expand this equation and then show that this

is what you actually get if you were to solve these set of equations. We will call these set of
equations are 3 and 4, which basically express the boundary condition.

(Refer Slide Time 16:01)



So solving for this ΓTE or equivalently ΓTE from these set of questions is as simple as writing
down the appropriate reflection coefficient expression for the transmission line case. A longer
calculation indeed confirms that what we have written is true. Okay. 

We are most of the times interested in the reflection.  Sometimes we are interested in the
transmission, but most of the times we are interested in the reflection because what we are
trying in a manner that is similar to the transmission line problems is that if I have a material
and  if  I  have  another  material  and  I  will  send light  from say  one  material  to  the  other
material,  obviously, if these material  intrinsic impedances are mismatched or they are not
equal as in, for example, air glass interface, right, so glass has a different permittivity or a
medium  impedance  η  whereas  air  has  a  different  permittivity,  and  hence  a  different
characteristic impedance or different wave impedance or intrinsic invaders. When these two
are not same, which of course is true, there will be some amount of power that would be
reflected back. Okay. 

Because the reflected power or the power density is related to the transmitter power density
in a straightforward manner, magnitude of gamma square will tell you the fraction of the
power that is actually being reflected back. Okay. And this in many cases may not be okay.
For example, in many situations, you would want most of the light power that is incident on
to the glass to actually be absorbed by the material, okay, and then transmitted into the other
medium. Okay. You don’t want much of a reflection coming out, coming from that one.

So this is a simple case of say, you know, antiglare glasses. In antiglare glass if you, you
know, buy and then wear that one, whatever the sunlight that you are going to get would
actually be, you know, reflected back. So you basically can make the reflection approach as,
you know, high as possible or in some cases where you want light to actually enter in the
form of a laser cavity, for example, you have to put what is called as antireflection coating.



Antireflection coating minimises the reflection. Okay. It kind of makes the reflection go to
zero, so which means that most of the power is actually transmitted.

So whether you are designing for minimizing the reflection or maximising the reflection, you
would deal with, you know, fact that you are going to coat materials with different type of
materials of certain thickness, then your job would be essentially similar to that of matching
on a transmission line. So in a transmission line, you had one main line. You had another line
and then you put in what is called as a stub line, the one that we studied, which was actually
forcing the reflection on the main line to actually be equal to zero, right? So a concept that is
similar can be used here also and the design of antireflection coatings and corresponding, you
know, anti-transmission coatings as the glare thing that we talked about, they all are very
important and very practical uses of this set of equations. Okay. 

However,  before  going to  that,  I  would  like  to  start  off  with  couple  of  observations  by
actually plotting this reflection coefficient. Okay. And I would like to do that one in order to
bring out certain very interesting aspects. So we are going to do that. Okay. We will take two
different cases and before we actually go to that one, let me remind you that η of any medium
which is given by square root of μ/ε, in our course this would actually be equal to μ0/ε0εr.
Okay. And we have already said that square root of μ0/ε0  or μ0/ε0  is basically the free space
impedance η0, which has a value of 377 ohms approximately, and then you have divided by
square root of εr. If εr is a real medium, then this εr will actually, square root of εr will actually
be equal to refractive index. 
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However, to confuse you, we use the letter n to devote refractive index. Okay. Unfortunately,
n and η have to be distinguished. I hope the context makes it clear, and it is common practice
in dealing with optical materials, okay, when you deal with optical materials or in optics to
use refractive index rather than to use the wave impedance η. Okay.



So with that in mind, what I wanted to tell you was η is inversely proportional to refractive
index. Okay. So any medium impedance that you want to obtain, you take the impedances of
the free space divided by the appropriate refractive index. Okay. 

Now let’s write down the expression for ΓTM, okay, which I will write instead of in the wave
impedance or using wave impedance, I will use the refractive index here and when I use the
refractive index, please check this out. This is what the equation is going to look like: n1 Cos
θt - n2 Cos θi where n is in the refractive index. So I’m going to write this as refractive index
for, okay, so using refractive index is what I wanted to tell you, divided by n1 Cos θt + n1,
sorry, this is n1 Cos θt + n2 Cos θi. Okay. 
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Now Snell's law tells you that n1 Sin θi should be equal to n2 Sin θt, which actually allows me
to write Cos θt as 1 - (n1/n2)2 Sin2 θi. So I can rewrite in this expression ΓTM, the expression
can be made to depend only on the angle of incidence θ i and given n1 and n2 are constants, I
will have an expression for the reflection coefficient of a transverse magnetic wave purely in
terms of angle of incidence. 

Now what I can do is I can actually obtain what I would now kind of a plot or a graph
wherein I am going to vary the angle of incidence θi. What is the acceptable range for θi? θi =
0 corresponds to normal incidence and θ = π/2, which is basically 90°, right? So this is 90°
would  correspond  to  what  is  called  as  grazing  incidence,  okay, meaning  if  this  is  your
interface here, θi = 0 would have the k vector directly in this manner. The electric field will be
here and the magnetic field let’s say will be along perpendicular direction. Okay. 
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However, for the grazing angle, this is the k vector that would be almost along this direction.
The electric field vector would be say perpendicular or parallel depending on which type of
the wave you are considering and this is how you are going to get. So you have this interface
and then grazing angle is just touching the interface in this manner, and if the electric field is
perpendicular, that would correspond to the perpendicular polarisation and that is precisely
what we wrote for ΓTM. I hope that connection is also very clear. Okay. 

So this is the range over which the angle θi can vary from 0 to 90° and if I plot the magnitude
of the reflection coefficient, which is what I am interested, for this kind of a lossless material
and having no active gain medium, the maximum reflection coefficient value will be equal to
1. Okay. 
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Now if you consider two cases, so let’s assume that n1, which is the medium of, you know,
this is the refractive index of the medium one and I will assume this n1 to be equal to 1 and n1

= 2.5, okay, and then vary the angle of incidence θi, evaluate the magnitude of this particular
expression and then plot it. I can write a simple Matlab program with just two, three values
here or write a simple Excel sheet in order to do that, do this calculation.

What you will observe is that when you plot this ΓTM, at t = 0, it roughly starts around with a
value of 0.43. Please check these numbers. Okay. That will actually give you some facility in
using these equations as well. So it starts at 0.43.

What happens is as you start increasing the angle of incidence, at somewhere at a point of 68°
approximately, okay, the reflection coefficient actually goes to 0 meaning that there is total
transmission  at  this  angle,  okay, the  light  is  basically  totally  transmitted  into  the  second
medium provided it is purely of TM polarisation. Okay. And we will call this angle as θB.
This is basically called as Brewster's angle and you can will show that this Brewster's angle
will actually be given by Tan-1n2/n1. Okay.
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I am not deriving the expression for Brewster's angle. This is there in the references that we
have taken, but please verify that for the medium cases that we have considered n1 = 1 and n2

= 2.5, this angle where this reflection coefficient goes to 0 is roughly 68°. Okay. 

Then  what  happens  is  that  the  reflection  coefficient  magnitude  keeps  increasing  and
eventually approaches 1, okay, at 90°. Okay. So this is what you are going to get for TM = 1,
I mean, ΓTM equals this particular case. 
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How about the transverse electric case? In the transverse electric case, things will be slightly
different. Okay. We will do the transverse electric case, but this time we will assume that
medium n1 = 1 but n2 = 1.44 so that this equation starts at 0.2, that is the amplitude will



actually start at 0.2. The reflection coefficient magnitude starts at 0.2 and then very slowly
goes up. So this is for the transverse. I have not drawn the equation nicely, but this is how it
actually goes up. So there is it doesn’t go to zero. It simply scales up in a very slow manner
and then eventually  reaches  1 at  θ  = 90°.  Okay. What  you have  to  observe here  is  that
medium one was a lower refractive index medium and medium two was a higher refractive
index medium. Okay. 

(Refer Slide Time 26:22)

Now let’s switch these two cases, okay, and then consider what would happen for TM and TE
when we let the angle, so what I will do is I will have the same angle say from 0 to 90°.
Okay. I know the maximum value is going to be 1. Okay. So now I'm ready, but this time I
am going to assume that n1 = 2.5 and n2 = 1. Okay. So I am assuming that n1 is basically equal
to  2.5.  I  am assuming  that  the  incident  medium  has  a  higher  refractive  index  than  the
medium, second medium, which has a lower refractive index. In this case what happens? 
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You look at this. Starts off at somewhat, you know, close to 0.5 or 0.43, maybe even slightly
different than that one. Let’s not worry about that. However, as you start decrease, I mean, as
you start increasing the angle of incidence, it drops down at some angle 22°, which would
correspond to the Brewster angle, the magnitude of TM will be equal to 0 at this Brewster
angle. 

However, after slight change in the angle, the reflection coefficient suddenly becomes 1 and
then remains 1 throughout the rest of the incidence angle. Okay. If you wish to observe this
carefully, you can actually decrease the refractive index difference. So I assume that that n1 =
1.44 and n2 = 1.0 and then redraw this picture, okay, with same 90, 0, and this 1 that I have. 

And when you do this case, you start off with some value, which I will leave as an exercise,
but you will quickly go to 0 at 33°, okay, and then as it starts to increase slightly, at some
arbitrary point it is going to suddenly increase and then remain equal to 1. Okay. And this
angle not very far from this 33 angle, this is actually just about 44°, we will call this as some
critical angle beyond which, so when the angle of incidence is greater than the critical angle,
the magnitude of the TM as well as TE, I have not shown this, but it would also be equal to
the same scenario, both will be equal to unity. 
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And this phenomenon is called as total internal reflection, and it figures mainly in guiding
light and it is a very important topic in optics that we are going to talk about next modules.
Thank you very much.


