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Lecture – 66
 Karush-Kuhn-Tucker (KKT) conditions

Hello, welcome to another module in this massive open online course. In this module

you want to start looking at KKT conditions. So, the Karush-Kuhn-Tucker conditions,

which are convenient for solving any optimization problem alright.

(Refer Slide Time: 00:28)

So, what you want us to start looking at is an important of play or aspect of optimization

also termed as KKT conditions. Also termed as KKT conditions and these I am sorry,

these are the KKT conditions which are also termed as which basically short for the

Karush  Kuhn  or  Kuhn  Tucker.  The  Karush-Kuhn-Tucker  conditions  and  these  are

convenient for solving optimization problem.



(Refer Slide Time: 01:38)

So,  now consider  again  the  original  or  the  final  optimization  problem,  consider  the

original problem what we have is remember we have minimize g naught of x bar subject

to g of x bar is equals to 0, i is equals to 1, 2 up to m and g j tilde of x bar equals 0 and I

am sorry, i equals to 1, 2 up to l, g j tilde x bar equal to 0, j equals to 1, 2 up to m. 
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And in addition assumed that strong duality holds. Let us assume that strong duality

holds, which implies at P star is equal to d star. Now we know what mean by strong

duality. Strong duality employs that P star which is the optimal value of the original that



is the primal optimisation problem equals d star, which is the optimal value of the dual

optimization problem alright. Where the dual cost function of the dual objective function

g d lambda bar nu bar maximizes subject  to constrain lambda bar is  greater than or

equals to 0, you get the dual optimal value d star. And if strong duality holds then P star

equals to d star ok. 

(Refer Slide Time: 03:29)

So, P star is optimal value of primal problem and d star is basically your optimal value of

the d value; optimal value of the dual optimization ok.

(Refer Slide Time: 04:04)



Now, let x star now in addition let x bar star equals primal optimal problem or the primal

optimal  solution,  and  that  is  where  the  optimal  values  achieved  for  the  primal

optimization problem. That is x bar is the solution of the primal optimization problem.

Similarly, let lambda bar star nu bar star equals the optimal value and not the optimal

value that is the solution of the dual optimal problem that is where the dual optimal is

achieved ok. Then by strong duality then by duality or rather strong duality, so we have

so basically what this means is, that is if you look at the objective value g naught at x

start that is equals to P star.

(Refer Slide Time: 05:38)

And if you look at the value of the optimization the dual objective function at lambda bar

star and nu bar star, this will be the dual optimal value that is this term there is a optimal

value of the dual optimization problem alright. So, they are P star and d star.

And now from strong duality, we have already said this implies P star equals to d star,

which implies that g naught of x bar star equals the dual function g d of lambda bar star

nu bar star.



(Refer Slide Time: 06:39)

Now g naught; now, if you look at this g d of lambda bar now dual function remember,

the dual function is the infimum of the Lagrangian, alright.

So, the dual function g d is nothing but the infimum with the Lagrangian over the set off

all  feasible  points  x  bar,  alright.  So,  this  is  basically  or  infimum or  basically  is  the

minimum ok. And this is not the minimum over x bar of g naught x bar plus summation i

equal to 1 to l lambda i star g i of x bar plus summation g equals 1 to m nu j star g j tilde

of x bar ok.

So, g d of lambda bar star nu bar star is nothing but the infimum of the Lagrangian over

all x bar at lambda bar star and nu bar star ok. So, that is the key argument here this

transaction ok. Now once you realize that the rest of the argument is very simple. 
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Now, if you look at this, this is the minimum over all x, bar which means this is less than

or equal to; so remember the optimal value of this is the minimum or all x bar which

means this is less than or equal to the its value corresponding to x bar star ok. So, this is

less than because, x bar star is one particular x bar that belongs to feasible set ok. So,

therefore, this is less than or equal to g naught of x bar star plus summation i equals 1 to

l, summation i equal to 1 to l lambda i star g i of x bar star plus summation g equals 1 to

m nu j star g j tilde x bar star, which is less than or equal to g naught.
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And now if you look at this quantity; now look at this again x bar star is the optimal

value belongs to the feasible set satisfy the constraints implies this is equal to 0 which

implies this is equals to 0. So, this is equal to 0. Now this again lambda i star remember

is greater than or equal to 0, g i x bar star x bar belongs to feasible set x bar star belongs

to feasible set. So, this is less than equal to 0. So, this is less than or equal to 0.

So, this is less than or equal to g naught x bar star. And therefore, now you have very

interesting observation. You have started from g naught x bar star, you have ended with g

naught x bar star, which are indeed equal this implies all the intermediate quantities. So,

you have left g naught x bar star less than equal to right g naught x bar which are nothing

but one and the same; which means all the intermediate quantities which are sandwiched

in between must be also equal to g naught x bar star ok.

So,  which  means  that  all  intermediate  quantities  must  equal,  this  is  very  simple  for

instance, we are the in equality 5 less than or equal to x less than equal to y less than

equal to 5. So, remember the end we have 5, 5 and x 5 less than equal to x, x less than

equal to 5. This is only one possibility that is x equals 5, y equals 5.

So, all the intermediate quantities;  so similarly if you follow this chain of arguments

towards both an g and g naught x bar star, which means all the intermediate qualities

must be g naught x bar star.
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And therefore, this implies in particular we must have summation i equals 1 to l lambda i

star gi x bar star plus equals 1 to m nu is nu j star gj tilde x bar star hum this is equals to

g naught x bar star, which implies that. Now if you cancel these things g naught x bar

star g naught x bar star we know this is 0 anyway.

(Refer Slide Time: 12:59)

So, this implies that the only remaining term that is summation i equals 1 to l lambda i g

i x bar this is equals to 0. Now remember each of this quantity as lambda i g i x bar is

less than equals to 0, the sum of several non positive quantities is equal to 0 which means

each of this quantities is equal.

You remember each of this quantity is less than equal to 0, but there some is equals to 0

which means each of these quantities equals to 0. This implies lambda i into gi x bar

equal to 0 for each i, for i equals to 1, 2 up to l. And this is the very interesting property

this is termed as complimentary slackness and I am going to explain this in a movement,

this is termed interesting name. The meaning of this is following this implies lambda i

into g i x bar is equals 0 which implies either. 
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So, we have lambda i g i x bar equal to 0. So, this implies 2 things either lambda i equals

0 correct, which means g i of x bar can be less than 0 or lambda i is greater than 0 and g i

of x bar equal to 0.

(Refer Slide Time: 15:04)

So, in this case now let us look at this in this case, the constraint is tie, it is met with

equality. And Lagrange multiplier LM equals slack that is greater than. Now in this case

the constraint is slack g i x bar is less than 0, so there is some slack ok, g i x bar is less



than 0, which means whatever is gi x bar minus 0 that is the slack, so the constraint is

slack.

And LM Lagrange multiplier equals tight because, the Lagrange multiplier equals 0. So,

this is the meaning of the complimentary slack that is either the Lagrange multiplier is

slack or the constraint is slack. It cannot happen that both the Lagrange multiplier and

the constraint are slack; that is it cannot happen that lambda i is greater strictly greater

than 0 and g i of x bar is strictly less than 0, this cannot happen because lambda i into g f

x bar must equals ok.

So, it cannot happen that lambda i is greater than 0 g j or g i of x bar is strictly less than 0

this is not possible.

(Refer Slide Time: 16:41)

Which means either constraint or Lagrange multiplier has to be slack this termed as to be

complimentary slack. So, these complement each other;  either Lagrange multiplier  or

constraint ok. 

This is termed this termed as complimentary. This property is termed as complimentary

slackness. And this  is a unique aspect of the KKT conditions that is that is the both

cannot be and both cannot be that is cannot happen that Lagrange multiplier is strictly

greater than 0. The constraint inequality constraint is less than 0, it can only happen only

that only one of them is slack, let the other is 0.



So,  the  Lagrange  multiplier  is  0,  the  constraint  is  slack,  is  the  constraint  is  0,  the

Lagrange multiplier is slack and this is known as complimentary slack. So, only one or

the can be slack ok, termed only either Lagrange multiplier or constraint can be slack,

not has to be slack, can be slack, only one or other can be slack. 

(Refer Slide Time: 18:24)

Only one or the other can be slack. That is basically your complimentary slackers. And

the  KKT  conditions  can  be  finally,  stated  as  follows;  the  Karush-Kuhn-Tucker

conditions. 
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These are your Karush the Karush-Kuhn-Tucker. And the KKT conditions are basically if

x bar lambda bar nu bar are optimal, that is a x bar for obviously the primal problem, this

is for the primal and this is for the dual and strong duality holds.

(Refer Slide Time: 20:05)

And strong duality holds, this implies that your g naught of x bar equals g d of lambda

bar nu bar.
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Then it must be that;  then first we have the primal constraints,  these must hold. The

primal constraints are basically g i of x bar less than equal to 0 for i equals 1, 2 upto l, g j

tilde of x bar equals 0 g equals 1, 2 up to m.

(Refer Slide Time: 21:13)

The dual constraints must hold. What are the dual constraints? Remember lambda bar is

component wise greater than equals to 0 which implies each lambda i is greater than

equal  to 0,  for i  equals 1,  2 up to  l  that  is  Lagrange multipliers  associated  with the

inequality constraints are greater than or equals to 0, alright.
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Complimentary  slackness,  this  is  the  third  condition.  Complimentary  slackness  what

happens in complimentary slackness, we have with respect Lagrangian, with respect to

the gradient, with respect to the Lagrangian equals 0. 

This implies that, the gradient of the Lagrangian vanishes that this implies basically the

gradient  with  respect  to  x  because,  remember  at  x  bar  this  is  the  infimum  of  the

Lagrangian correct, this optimal value x bar we have the infimum of the Lagrangian;

which means the gradient we have the minimum of the Lagrangian function. Therefore,

the gradient with respect to x bar of the Lagrangian has to vanish at x bar ok. Plus I am

sorry, this is not complimentary slackness, complimentary slackness let me just mention

the complimentary slackness aspect this will come later.

So, the complimentary slackness we have already seen that. That is lambda i into g i of x

bar equals 0, i equals 1, 2 up to l, that is either lambda i equals 0 or g i x bar equals either

lambda either lambda i greater than 0 or g i x bar less than 0. That is either a slack, but

not both either a slack but not both.

And  finally,  since  x  bar  is  the  infimum or  at  x  bar  you  have  the  minimum  of  the

Lagrangian, of the Lagrangian function Lagrangian of x bar lambda bar nu bar.
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The gradient with respect to x bar of the Lagrangian must vanish at this point x bar. That

is we must have delta the gradient of the respective x bar g naught x bar plus summation



i equal to 1 to l, gradient with respect to i, g of x bar plus summation g equals 1 to m nu

j, the gradient with respect to x of g j tilde x bar, this must be equal to 0, alright. And

these are the KKT conditions and if these are x bar lambda bar nu bar are the optimal

solutions of the primal, and the dual optimization problems x bar lambda, and strong

duality holds x bar lambda bar nu bar must satisfy must satisfy the KKT conditions ok.

So, these are the 4 KKT conditions that must be satisfied by the solution solutions x bar

of  the  x bar  of  the  primal  optimization  problem and lambda bar  nu bar  of  the  dual

optimization alright.

So, let us stop here and continue in the subsequent modules.

Thank you very much.


