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Practical Application: Robust Beamformer Design for Wireless Systems

Hello.  Welcome  to  another  module  in  this  massive  open  online  course.  So,  we  are

looking  at  Robust  Beam  forming  as  an  application  of  convex  optimization  or  the

optimization framework that we have seen so far. So, let us continue our discussion. 

(Refer Slide Time: 00:28)

We are looking at  robust beam forming or  multiple  antenna system, remember  what

beam forming does is to focus the wireless signal in a particular direction formal beam in

a particular direction. And robust beam forming is the paradigm where the knowledge of

the channel is not known precisely. So, there is uncertainty in the channel knowledge and

how to design a beam former that is robust to that uncertainty, we said the robust beam

former  can  be  designed  as  the  solution  to  the  following  optimization  problem  w

minimize  w  bar  transpose  R  w bar  w  bar  is  the  beam former,  R  is  the  noise  plus

interference covariance matrix.

Subject to the constraint that w bar transpose h bar is greater than or equal to 1 for all h

bar belongs to this ellipse correct, this ellipsoid this is also termed as the uncertainty

ellipsoid, this is also termed as uncertainty ellipsoid.
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And this ellipsoid is described as follows; this ellipsoid is the ellipse which has the centre

h bar e that is the nominal channel or the estimated channel. So, h bar e plus P u bar such

that  norm u bar is  less than or  equal  to  1 ok.  And well  now we want to  solve this

optimization problem to basically determine the optimal beam form the optimal robust

be for more if you were ok.

(Refer Slide Time: 02:30)

And that solution, first of all lets simplify this optimization problem and this is where it

can be done in  a very interesting  fashion as described below. So,  let  us look at  the



constraint  and  constraint  can  be  simplified  as  follows  ok.  Remember  the  constraint

ensures  a  minimum gain  of  unity  for  all  vectors  h  bar  belonging  to  the  uncertainty

ellipsoid.

So, we have what is the constraint? The constraint is w bar transpose h bar is greater than

or equal to v for all h bar belonging to the uncertainty ellipsoid which means now you

substitute for h bar w bar transpose h bar is well we have seen that is simply h bar e the

estimated channel plus P u bar greater than equal to 1 for all.

Now, for all h bar belong to E. Now becomes because, the equivalent condition is h bar e

plus P u bar for all vectors u bar such that norm u bar is less than or equal to 1 for all

norm u bar less than or equal to 1 ok. Now this is the interesting part, now this has to be

true for all vectors u bar such that norm u bar is less than equal to 1.

This has to be greater than equal to 1 all right, which implies basically this also has to

hold at that value of u bar where this is the minimum all right. So, is the minimum of this

overall u bar is greater than or equal to 1 that automatically implies that it is going to be

greater than or equal to 1 for all u bar such that norm u bar is less than or equal to 1.

So, this can be written equal until and you can convince yourself, this implies that for the

minimum of u bar that is you take the minimum over u bar, says in norm u bar less or

equal to 1. This w bar transpose h bar e plus P u bar greater than or equal to 1ok.
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If this definitely implies that about the minimum this has to be greater than equal to 1

and this implies; now I can simplify this further you take the minimum of norm or norm

u bar all u bars is that norm u bar is less than equal to 1. Now I can simplify this as w bar

transpose h e bar plus w bar transpose P u bar, the minimum has to be over this minimum

this has to be greater than or equal to 1.

Now, this is a constant w bar transpose h e bar, this does not depend on u bar ok. So, this

will come out of the minimization so, this implies if you look at this w bar transpose h

bar e plus minimum of norm of u bar less than or equal to 1 w bar transpose P u bar

greater than or equal to 1. Now, what we are going to do? We are going to set this let us

set this w bar transpose P as w tilde which implies P transpose w bar I am sorry w tilde

transpose so, P transpose w bar will be w tilde.

(Refer Slide Time: 06:32)

So, I will write this as w bar transpose h bar e plus the minimum over norm for all u bar,

such that norm u bar less than equal to 1 minimum or u bars that w tilde transpose u bar

greater than equal to 1.

And now this is very interesting, now if you observe now you see what is this is the

nothing, but the dot product w tilde transpose u bar. So, we have w tilde and we have this

vector u bar correct and we have the dot product. Now when is the dot product between

w tilde and you are minimum remember the dot products maximum when you bar is

perfectly aligned with w tilde.



And the dot product is minimum when the vector is 180 degree that is it is completely in

opposite direction and in a direction opposite the data of the material. So, the dot product

is minimum, when u bar forms a 180 degree angle with w tilde. So, this is where so, the

this is let us say, this is star. So, this is a 180 degree angle. So, we say w tilde u bar is

minimum when u bar is opposite that is forms a 180 degree angle with w tilde.
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And therefore what we say is u bar star this will be equal to minus w tilde because, the

vector that is exactly opposite to w tilde is minus w tilde. However we need u bar to be

normally bar to be less than or equal to 1; therefore, we normalize this with norm of the

w tilde that is it.

So, u bar is the unit norm vector, that is opposite to w tilde and this is for which this is

precisely the u bar for which you have minimum such that norm u bar less than or equal

to 1 w tilde transpose u bar ok.

This is where the minimum occurs, that is when u bar is a unit norm vector it is exactly

opposite  in  direction  to  w  tilde.  Therefore,  the  inner  product  is  basically  negative

number; let us this cosine 180 is minus 1 ok.
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So, this implies that now the minimum will be w bar transpose h bar e plus the minimum

over norm u bar u bar such that norm u bar less or equal to 1 occurs when u bar equals

minus w when u bar equals minus w tilde divided by norm w tilde. Therefore, and that

will be w tilde transpose into and I am now substituting for that value of u bar, which is

minus w tilde divided by norm w tilde. 

And this has to be greater than or equal to 1, if this is greater than or equal to 1, then it is

going to be greater than equal to 1 for all by implication by a. So, by following this

argument it is going to be greater than or equal to 1 for all vectors h bar belonging to that

else material. And now you see this is mine w tilde transpose into w tilde is nothing, but

norm w tilde square divided by w tilde; so, that is norm w tilde. So, this implies w bar

transpose h bar b minus norm w tilde greater than or equal to 1.

And now, we substitute for now w tilde, w tilde is nothing, but we have seen earlier w

tilde is basically you are a P transpose w bar. So, this implies w bar transpose h bar e

minus norm of P bar transpose w bar this has to be greater than or equal to 1. This is the

equivalent  constraint  or  this  you  can  say  is  the  simplified  constraint,  simplified

constraint.



(Refer Slide Time: 11:30)

And you can also write this as now w a transpose h bar e minus norm of P transpose w

bar greater than or equal to 1, this can also be simplified as follows norm of P transpose

w bar less than or equal to w bar transpose h bar e minus 1 ok. And now if you look at

this is very interesting, you can recall that this is a norm and this is your a fine, this is the

affine portion.

So, we have norm less than equal to something that is affine. So, this is basically you can

recall  and  you  can  look  the  notes  this  is  a  conic  constraint.  In  fact,  this  pair,  this

constraint represents a conic region or this is basically a cone or this is known as a this is

let us say this is a cone also known as a conic constraint.

It  is  a  very  interesting  constraint;  it  reduces  to  a  cone  or  a  conic  constraint.  And

therefore, now the equivalent optimization problem to find the robust beam former ok,

that can be formulated as equivalent optimization problem.



(Refer Slide Time: 13:28)

Equivalent  optimization  problem for  robust  beam forming  that  will  be  minimum  of

minimum or w bar transpose R w bar, such that w bar transpose P norm is less than or

equal to w bar transpose h bar e minus ok.

This is a coning constraint;  this is a second order quadratic optimization so, this is a

second order objective. This is a conic constraint so; this is known as the second order

cone problem. So, this is basically this is known as an SOCP equals second order cone

program so, this is a very interesting aspect.

So, the robust beam forming problem reduces to a very interesting optimization for more

either a very interesting or belongs to a very interesting class of optimization problems

turned as second order cone programs with the objective function is second order. All

right our objective function and the constraint is a conic constraint all right. So, this is

known as an SOCP problem and it is a very interesting problem.
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And it can be solved and I will demonstrate it separately because it is a little involved.

So, robust beam forming problem is an SOCP let us note that. Thus the robust beam

forming problem, thus the robust to inform a problem is in SOCP and the robust beam

former w bar; it can be shown that robust beam former is minus of lambda.

In fact, I will show this in a subsequent module plus R Q inverse of h bar e; this is the

robust this is the robust beam former. This is the robust beam former and lambda this is

the Lagrange multiplier, lambda equals Lagrange multiplier and this has to be determined

suitably. 
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And the matrix Q depends on R and P basically Q equals I am sorry depends on P and h

bar e. So, P transpose minus h bar e h bar. Of course you see notice P, P is the matrix

corresponding  to  the  uncertainty  ellipsoid  and  h  bar  e  is  the  estimate  the  nominal

estimate of the channel. And this is the solution to the robust beam forming problem, that

is w bar equals you can say this is w bar star w bar star equals minus lambda R plus

lambda Q inverse into h bar e all right.

So, I will conclude this module with this all right so, there is a very interesting problem

the robust beam forming problem, which can be shown to be an SOCP a Second Order

Code Problem and this is the solution. It is slightly involved which I will in illustrate in a

separate point.

Thank you very much. 


