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Hello, and welcome to our next module on Space Time Codes. Let us start with a brief

outline of today’s talk.

(Refer Slide Time: 00:56)

We would look at a real orthogonal design. We will look at a generalized real orthogonal

design will revisit that. And then we have studied complex orthogonal design what we

will do is then move on to quasi orthogonal design which will help us move from single

symbol decoding to decoding in pairs. And finally, we would look at some examples.

So, let us see how we can proceed we have done some of these earlier  and they are

important enough to be revisiting them again. So, let us go with that. So, let us recollect

what we learnt about real orthogonal design in the context of space time block codes.



(Refer Slide Time: 01:26)

We defined a real orthogonal design of size N as an N cross N matrix. So, it is a square

matrix G with the increase coming from x 1, x 2, up to x N such that G transpose G is

summation i equal to 1 through N, x i squared I N, where I N is an identity matrix. And

we have also seen that real orthogonal designs exist for limited number of cases namely

for N is equal to 2, 4 and 8 and we also know that G is proportional to an orthogonal

matrix.

(Refer Slide Time: 02:07)



We look at some examples well that three examples possible G 2 for N is equal to 2, G 4

for N is equal to 4. So, both of these cases if you do G 2 transpose into G 2 you will get

elements only along the diagonal and on diagonal will be 0.

(Refer Slide Time: 02:28)

And finally, the example for N is equal to 8 which will allow you to transmit 8 symbols

through 8 antenna elements in eight time slots. So, please note the columns correspond to

the antenna elements.  So,  clearly  this  is  the symbol that  I  will  be transmitting  from

antenna element in time slot one the first row corresponds to what we are going to do N

time slot 1. So, if I were to implement this in real life time slot one I send out x 1 from

antenna element one, x 2 from antenna element two so and so forth to x 8 till antenna

element 8.

Having done that, we go to our next time slot where we load minus x 2 from antenna

element one x 1 from antenna element two, x 4 from antenna element three so and so

forth till x 7 from antenna element eight and again I fire them and then I go to the next

time slot which will transmitted row three and we repeat this till we are at the last row

which is the time slot 8 where we send out these 8 signals.

So, what we realize is at the end of eight time slots we have been able to transmit x 1

through x 8. Therefore, the rate is 1 and we have seen that this orthoganality leads us to

single symbol decoding.



(Refer Slide Time: 03:57)

Then we said that we need to go beyond N is equal to 8 and therefore, we learn to tweak

the real orthogonal design and we went on to study generalized real orthogonal design,

where the matrix generative matrix is T cross N, where we go from plus minus x 1 plus

minus x 2 up to plus minus x K, again the constraint is G T G is nothing but summation I

equal to 1 through K x i squared into this identity matrix.

But, please note that this time we use the T time slots and therefore, since we have been

able to send K symbols effectively the rate is K over T should we compromise on the

rate.



(Refer Slide Time: 04:51)

Then we would be interested in finding out the smallest value of T. So, we would like to

send  out  the  symbols  in  minimum  number  of  time  slots,  because  T determines  the

decoding delay, because it  is  very obvious that we cannot start  the decoding process

unless until all the symbols of all the T time slots are received.

So, we define the delay optimal as an orthogonal design with minimum possible value of

the block length T.

(Refer Slide Time: 05:20)



We did this definition earlier. Here is an example. This is an 8 cross 7 generator matrix,

clearly it will be using 7 antenna elements it is. So, this x 1, x 2, up to x 7 goes through

the first time slot and then the next and next one, but we are using eight slots to send out

seven.

(Refer Slide Time: 05:44)

Then we moved on to complex orthogonal design when we remove this condition of real

symbols. So, our constellation could be QPSK, QAM, but here we would like to use

complex design and again we can verify that this is the only possible solution where G

Hermitian G gives this x 1 squared plus x 2 squared into I 2. This is the Alamouti code

we have studied and this is the only possible design forcing us to look at generalized

complex orthogonal designs.



(Refer Slide Time: 06:19)

Here we start with the possible symbols coming from 0 plus minus x 1 plus minus x 1

star which is the complex conjugate plus minus x 2 plus minus x 2 star and so on and so

forth up to x K star. And we again put this condition G Hermitian G is equal to some

kappa times this standard I is equal to 1 through K summation x i absolute value squared

into this identity matrix cross N cross N.

(Refer Slide Time: 06:55)

Then  we  make  some  observations  that  the  generalized  complex  orthogonal  design

provides a diversity of N cross M. So, this is one of the very important things, we get



tremendous amount of diversity gain using space time block codes and N is the number

of transport  antennas and M is the number of receive antennas.  So, it  is  directly  the

product.  The  other  good  part  is  the  decoding  complexity.  The  maximum  likelihood

decoding the symbol by symbol because they have been able to decoupled the decoding

operations at the receiver by using the information about the channel gains.

So, what we see is that we have three independent parameters, N, K and T. N is the

number of trans mate antennas I can fix that will, I can have the number of time slots K,

sorry the number of time periods T and the number of symbols K and I can play with

them and come up with a generator matrix which can be denoted by G sub NKT.

(Refer Slide Time: 08:00)

Now, we move forward and we see that we have already available some real orthogonal

designs.  Can  we  construct  generalized  complex  orthogonal  designs  from  this  real

orthogonal design? If we have that then we have a recipe. So, answer is yes, it is possible

to construct a complex orthogonal design using real orthogonal design. When we say real

orthogonal design you just mean that we have the generator matrix for that.

So, considering rate are real  orthogonal design with transmission matrix  G of size T

cross  N.  So,  this  could  be  a  generalized  real  orthogonal  design.  So,  we  denote  the

conjugate of G by G star and this is nothing but your placing all the elements x k with x

k star x 1 by x 1 star and so on and so forth. And therefore, we construct a complex



orthogonal design as follows. G c right is nothing but G the generator matrix of the real

orthogonal design and G star.

We can easily verify that if you take this and come or compute G c Hermitian G c then it

will you can check with the properties of G which is itself generalized real orthogonal

design to give you the following. So, thus by construction we have generalized complex

orthogonal design and we can go on and on with this.

(Refer Slide Time: 09:37)

 Let us take a very quick example. So, we would like to consider a three antenna system

there are three transmit antennas. So, N is equal to 3 and we would like to construct

generalized complex orthogonal design using a real orthogonal design.

. So, what we need to do is, we will put the first G here and G star here. So, if we

substitute this G by its elements here I have this design that we studied earlier again this

is a three antenna system and we have four time slots. So, it is kind of a generalized real

orthogonal design, but please note in four time slots it is able to send x 1, x 2, x 3, x 4.

So, it is a full rate generalize real orthogonal design.

All we have to do is substitute each x i by x i star and we fill up the lower half of this

matrix. So, we have just mechanically substituted the complex conjugate of each of this.

So, the top portion is my G and the lower portion is my G star and low and behold we

have are new constructed complex orthogonal design a generalized complex orthogonal



design available and one can verify that this will indeed give me G Hermitian G will give

me elements only along the diagonal.

Now, please note here N is equal to 3, so, if you see the subscript N is equal to 3, 3

comes in here and we have used four symbols to be transmitted as you can see x 1, x 2, x

3, x 4. So, x so, K is 4. So, the next number is 4 and if you see this total design will

require eight slots, right. The number of rows represent the number of slots, time slot. So,

8 is the third number here. So, we can denote this generator matrix as G 348. Later on we

will look at the performance of this as we go along the lecture.

(Refer Slide Time: 12:09)

So, if you do the computation of this matrix G Hermitian G you will get the following

along the diagonal you have summation i is equal to 1 through 4 x i squared and rest of

the terms are all 0. So, this is the generalized complex orthogonal design.

So, K is 4, T is 8. So, consequently we have rate 1 by 2. Please, note here the top half

was a full rate, this guy is also full rate, but will not increase the number of symbols they

remain from x 1, x 2, x 3 and x 4 consequently doubling the number of time slots had led

to halving of the rate. So, we pay in terms of rate. So, we were able to easily design it

where the rate has gone down.



(Refer Slide Time: 13:10)

Let  us  consider  another  example.  This  time  we have  N is  equal  to  4,  four  transmit

antennas. So, clearly there are four columns and then this a 434 design. So, we are trying

to basically try to see that four transmit antennas N is equal to 4, but the number of

symbols  that  we are sending is  only three.  So,  x  1,  x  2 and x 3 and their  complex

conjugate. So, at the second number is three and the number of time slots is four, that

gives you the last 4. So, this is a G 434 design K is equal to 3, T is equal to 4.

Now, the definition of rate is K by T. So, 3 by 4 it is also clear from this that I have taken

four time slots to send out three symbols. So, the rate is actually 3 by 4. But, what is very

interesting is that even though four antennas and the rate is not too bad in the first time

slot three antenna elements are firing and the fourth one is silent, there is a 0, I do not

transmit anything.

In the next time slot antenna one, antenna two and antenna four of firing with antenna

number three silent. So, where antenna number two does not emit anything and in the

last time slot the first antenna element does not radiate anything. So, every time slot one

of the antenna elements is silent, right. This is very interesting this has an implication on

the average power that we are transmitting through the antennas. The rate is not bad,

right and this is a complex orthogonal design of course, generalized complex orthogonal

design.



So, these are very interesting variations that give you some additional benefits without

compromising much on the rate. So, this of this thing shows you that each and every

time  slot  make sure that  one antenna element  is  silent.  So,  it  has  a  very interesting

implication on the power consumption that is also an important parameter here.

(Refer Slide Time: 15:46)

Now, let us talk about shortening, where we had earlier observed that it is possible to

obtain  code  designs  with  fewer  number  of  antenna  elements  simply  by  dropping

columns. Why? Columns represent the what you transmit from certain number antenna

number three. So, this column represent what you send from antenna element one, this

column represents  what  you sent antenna element  two along the four time slot  from

antenna element three across the four time slots.

So, what we do is we look at the earlier example here and we are curious to see what

happens to this code when you simply drop the last column, ok. We would like to say

that  we  are  now  instead  of  using  four  transmit  antennas  we  would  only  use  three

transport antennas. So, we just keep the last antenna element turned off across all the

time slots. So, if you do so, you will get this following code matrix.

Now, again what have we gained? We are again transmitting x 1, x 2 and x 3 using four

slots. So, the rate has not changed, but magically now we were design for three transmit

antennas. Is it orthogonal? sure.



Now, we dropped the fourth column, but we could have as well dropped the second of

the first any one of them because no antenna is holier than the other antenna. So, we

could have obtained deleting other columns another parallel G 334 design and then we if

you are not satisfying we want to go to a two antenna system I would again like to drop

off any one of further to get a G 234 design that will be a design for N is equal to 2.

So,  the shortening method is  again giving me a mechanism to use fewer number of

antenna elements right, but still giving you this design. So, if I draw this third column

again some left with this matrix which corresponds only two, N is equal to 2 antenna

elements, but what is very interesting is we have x 1, x 2 and x 3 all 3 being sent over

tack over the four time slots. So, we have not really compromised on the rate; rate still

remains 3 by 4, but the number of antenna element has gone down. So, it  will have

implications on the diversity gain.

So, yes there is no free lunch, we are cutting back on the number of antenna elements

and leading to the lowering of the diversity gain, which shortening is a very simple way

to make my life  simple from a larger design I  can go down to a design with fewer

number of antenna elements.

(Refer Slide Time: 19:03)

So, here I have dropped the third column as well. So, effectively from the original design

of 434 I have been able to drop the last two columns and retaining the first two columns

and I  still  have this  design,  but each time we do so,  we are paying in terms of  the



diversity. Because diversity is N into M, where N is the number of transmit antennas

which we have halved and so, the diversity gain will also drop down by half. We have

observed this that the diversity gain is N cross N.

(Refer Slide Time: 19:42)

Please note that the transmission matrix of G 434 is not unique. So, again we have here

another parallel design, an alternate design with rate 3 by 4, it is given here let us talk

about this as G prime 434 to distinguish it from the original design that we looked at G

434. So, this is different if you do not remember the earlier one will bring it in. So, this is

the first design you saw, this is the second design. Here is if you see it is a more simple

way. So, we have x 1, x 2, x 3 from the first three elements nothing from the fourth

element whereas, in this first design we had the complex negative earlier and so on so

forth, but again zeros one 0 in every row one 0 and every row.

Now, you can check the both of these designs are orthogonal. Now, it can be shown that

the rate of a generalized complex or eternal design cannot exceed 3 by 4 from more than

two antennas.  So,  this  has  been shown earlier. So,  this  is  the  best  we can  do for  a

generalized complex orthogonal design for more than two antennas.



(Refer Slide Time: 21:10)

Now, let  us  move  a  little  bit  ahead  and  talk  about  something  called  is  diagonally

orthogonal space time block code. So, we are not looking a different variations and what

we can buy, what we can compromise and sacrifice.  So, diagonally orthogonal space

time block code is a T cross N transmission matrix G. Again, clearly it is using complex

elements from x 1, x 2, x 3 and so and so forth up to x K all the real and complex and the

condition is that G Hermitian G should be a diagonal matrix.

Earlier, it was something multiplied with an identity matrix, but this time I am happy if it

is just purely a diagonal matrix. So, D is an N cross N diagonal matrix and what will be

the  diagonal  elements?  Well,  diagonal  elements  can  be of  the  type  some coefficient

absolute value of x 1 squared there is some coefficient absolute value of x 2 square and

so and so forth up to some coefficient absolute value of x K squared. So, these are the

diagonal elements of this diagonal matrix.



(Refer Slide Time: 22:25)

 Let us look at a quick example of our transmission matrix for a diagonally orthogonal

space time block code. So, here what we have is if we count the columns 1, 2, 3, 4, 5 we

have N is equal to 5. So, we are going to use five antenna elements to transmit and if you

count the number of rows 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11 so, we have eleven time slots

with which they are going to send this out.

(Refer Slide Time: 23:07)

So, T is equal to 11, N is equal to 5 and if you observe carefully we have x 1 through x 7

only. So, we have K is equal to 7. So, seven symbols being transmitted using your eleven



time  slots.  So,  rate  is  obviously, 7  by  11,  we can  carry  out  for  are  sanity  check  G

Hermitian G and what we get is as follows.

So,  up  to  this  point  it  looks  pretty  much  like  your  regular  generalized  complex

orthogonal design, but here if you see the last diagonal element we have some coefficient

x i squared is equal to 1 to 3 and then from 4 to 7 this one. So therefore, we could not

represent it as something multiplied by an identity matrix. So, thus we have this design.

This is clearly had a similar expression come in the last diagonal then we would have

said that, no, it is really a generalized complex orthogonal design.

(Refer Slide Time: 24:44)

Now, what  we  have  studied  so  far  is  this  single  symbol  decoding.  This  has  really

improved are decoding complexity and we do not have to worry too much about doing

exhaustive search over a pair. So, the two main properties of this orthogonal design are

full diversity, ok. We have to looked at so many examples that is giving us full diversity

and simple separate decoding. These are the two trump cards that we have, but we have

seen also at full rate complex orthogonal design do not exist for N is equal to 2, we made

that observation.

So,  we have to  relax something to gain something more.  Can we realize  the simple

separate decoding constraint and gain in terms of the rate of the code? Which is more

important  separate  decoding  constraint  which  has  a  direct  implication  on  decoding

complexity or the rate of the code which has a direct relationship to bandwidth? So, on



one side we have to weigh whether we would like to gain in terms of bandwidth or we

would  like  to  reduce  the  receiver  complexity;  these  are  the  two  requirements  and

orthogonal code so far were giving us the single symbol decoding thereby reducing to

the extent possible, the receiver complexity. And at the same time giving us full rate or

wherever rate was not possible for N is equal to 2 we do not have full rate codes. So,

question is now can we maybe go for double symbol good decoding or pairwise? So, let

us explore that possibility. 

This is done in a new class of codes called quasi orthogonal space time block codes or

QOSTBC for short, quasi orthogonal. So, we are going to relax some properties of the

orthogonal design. In quasi orthogonal space time block codes pairs of symbols can be

decoded independently. So, we have compromised in terms of single symbol we are now

going back to pairs it is not too bad if the number of symbols are not too large, right.

So, we are now going to look at pairs of symbol as opposed to single symbol decoding.

(Refer Slide Time: 27:09)

Let us start with an example. Consider the following quasi orthogonal space time block

code. So, here if you see there are four antenna elements so, N is equal to 4 and here if

you see we are using four time slots. So, we are back in business earlier to transmit four

symbols we are started to take more number of timeslots thereby reducing the rate, but

here again we are back in business we are transmitting four symbols over four time slots



and  thereby  where  looking  at  the  full  rate  course,  but  then  what  happens  to  the

orthoganality? Clearly, this is not an orthogonal design.

(Refer Slide Time: 28:01)

So, let us check it out we do this multiplication G Hermitian G, what does it give us?

Well, if you do that you get as a first diagonal element x 1 absolute value squared plus x

2 absolute value squared same for the second and then this one is x 2 absolute value

squared plus x for absolute value squared and similarly, here.

So, what has happened is we have kind of coupled these, but what have we gained well

the QOSTBC is a full rate because it sends four symbols in four time periods. So, even

though it has four antenna elements the diversity is only 2, that is the question we have to

ask ourselves. Yes, diversity to why? Why are we saying that the diversity is do can we

observe this and say the diversity is 2 that is whenever we do coding at one time only

two symbols if only one of them fades the other one can be used. So, the diversity gain

of 2 is  there,  similarly a diversity gain of 2 is  there.  Had there been 4 elements are

together then we would have looked at a diversity gain of 4 as required because N is

equal to 4, but the gain is 2.

Please note, intuitively we have explained that diversity gain comes from the fact that

each of the symbols coming from different antenna elements goes through a different

path and a path gain. Now, if that is fading then if we assume independent fading if one

of the symbols is fading the other one is not. So, the diversity gain comes from that.



Here, if you look at this carefully you can see immediately that the diversity gain is 2 and

not more.

(Refer Slide Time: 30:19)

So, what does it mean? Well, the first two antenna elements always transmit x 1 and x 2,

while  the  remaining  two always transmitting  x 3 and as  x 4 and some combination

thereof, but that is it. So, effectively what we have done is we have just concatenated to

Alamouti codes and we are trying to say that we are sending x 1 and x 2 and x 3 and x 4,

but we are just using Alamouti code two times in a row, but Alamouti will only give me a

diversity gain of 2, rate is preserved because 2 times in a row we are using a full rate

code. So, the effective rate is one, but diversity there is no improvement.

So, to achieve full diversity instead of substitute x k by s k in the transmission matrix we

can use the following substitution to construct the codeword matrix. So, now we started

mixing. Earlier instead of x 1 being dependent only on x s 1 I made x 1 dependent on s 1,

s 2 now the first transferred antenna will be dealing with s 1 and s 2 the second one is

now dealing with s 2 s and s 3 and s 4. So, brought in back this other two symbols I have

started mixing them up and thereby hoping to get diversity.



(Refer Slide Time: 31:53)

So, what does it lead us to? Now, if you look at this C Hermitian C you will get this kind

of a solution, right and what is a? a is given by this. So, you again immediately get back

all the four terms in summation, immediately a diversity jumps to 4, because see we

assume all the signals are fading independently. So, if you are taking the sum of the all

the four symbols effectively even if one fades other three will not fade giving you that

diversity  gain  now  there  independently  fading.  So,  if  you  carefully  observe  this  C

Hermitian C is immediately leading you to a diversity of 4.

(Refer Slide Time: 32:40)



So, now, let us consider another quasi orthogonal space time block code, these are best

understood using examples. Now, if you logically partition it as follows. So, we divide

into four quadrants.

(Refer Slide Time: 33:09)

And, we see that the first quadrant is G A x 1, x 2; first please note, it only depends on x

1 and x 2, this depends on x 3 and x 4, this is depends on x 3 and x 4, this one depends

on x 1 and x 2. So, I do that x 1 and x 2, x 1 and x 2, but if you look at carefully this is

these two our complex conjugate. So, this is G 1 x 1 comma x 2 and this is G 1 complex

conjugate. Similarly, this is G 3 and this is negative sign complex conjugate. So, I get x

3, x 4, G A and minus G A complex conjugate.



(Refer Slide Time: 33:53)

So, we right G as follows we just now observed, but what is G A? Well,  this is the

standard Alamouti code. So, we denote the i-th column of G by chi i and we look at chi

1, chi 2 in a product that is 0 chi 1, chi 3 – 0, chi 2, chi 4 is 0, chi 3, chi 4 is 0.

So,  we  are  looking  at  this  pairwise  orthoganality  and  therefore,  the  name  quasi

orthogonal.

(Refer Slide Time: 34:32)

So, here this notation is the inner product of the vectors. So, one way to look at it is that

the sub space created by chi 1 and chi 4 is orthogonal to the substrate created by chi 2



and x chi 3. So therefore, we have these quasi orthogonal codes, right, this justifies the

name.

(Refer Slide Time: 34:59)

Let us look at yet another example of a 4 cross 3 quasi orthogonal space time block code,

ok. Four antenna elements as shown by the four columns, well we do not want them to

disappear all of them and we have got four time slots and these are quasi orthogonal

space time block code that we have seen, all right. So, if you make this observation this

is only a function of x 1 and x 2, this guy this quadrant is G A star which is the complex

conjugate this is G A x 3 coma x 4 is starts stands for the Alamouti and this is minus G a

x 3 coma x 4. So, this is what we have done this.

And, now let us drop one so, we erase one of the columns. So, suddenly we are left with

three antenna elements, but please note here the beauty we still have x 1, x 2, x 3 and x 4

all 4 symbols being transmitted in four time slots. So, just by dropping this column we

reduced are diversity gain,  but of course,  few number of transmit antennas has other

practical benefits and. So, we replace that four columns to three columns, ok. So, we go

this one and we write it properly and we express it in terms of the three columns.

So, we have now obtained a simple design for three transmit antennas. So, this using this

quasi orthogonal space time block code we are now going to send three symbols x 1, x 2,

x 3, x 4 which will represent if I map s 1, s 2, s 3 and s 4 in four time periods. So, clearly

the rate is unity.



(Refer Slide Time: 37:06)

Now, just let us spend a couple of minutes on our design targets. What are the design

targets, what we gain, what we can compromise is there a free lunch, let us look at that.

So, the design targets  for space time block codes are  as follows. First  is  the rate of

transmission, direct implication on the bandwidth. Today, all practical designs require us

to transfer data at higher and higher rates. So, one of the greatest benefits is the rate

improvement, we are can get full rate codes and therefore, we would be very happy to

have rates as high as possible as one of the design criteria.

The number 2 important thing is a diversity gain, we have been talking about it all along.

Space  time  block  codes  give  you  humongous  diversity  gain  specially  at  high  SNR

conditions and this comes from I rank criteria that we discussed earlier. Then we have

also  got  multiplexing  gain  because  simply  because  of  this  mimo  system  you  have

different channels and different channels independently give you multiplexing gain.

Then we had looked earlier  into the determinant criterion were coding gain was also

coming from the design of good space time block codes. So, that is an add on and finally,

there  is  a  diversity  multiplexing  gain  trade  off,  that  comes  from  a  non  vanishing

determined condition we have not talked about it in detail, but intuitively you can look at

either from the independent channels that we get from different antenna elements we

have diversity or we can utilize it as a multiplexing gain, but not both. So, we have a

tradeoff of sorts.



And,  finally, we have  been talking  about  the  single symbol  decoding and at  most  a

pairwise decoding. So, decoding complexity is important specially if you are looking at

larger  and  larger  constellation  size.  So,  you  have  this  platter  of  constraints  or

requirements or design targets if you will that we have to keep in mind while designing

or choosing good space time block codes.

(Refer Slide Time: 39:39)

Let us now move over to the performance of some good space time block codes. So, if

you see on the x axis we have the SNR in dB, on the y axis we have the bit error rate,.

We have lots of curves here let us look at this top one which is the worst performing

curve, it is for a single antenna system. So, you do not have space time block codes. For

the sake of discussion only let us make sure that we understand that m is equal to one

that is it is a single receive antenna.

So, when we talk about multiple antennas we are putting them at the transmitter. So, the

first case is SISO. So, single input single output system, no diversity gain whatsoever

and we have a happy go lucky curve going out here, not to go not too bad, but can we

improve it. So, we immediately put in two antenna elements and we have the second

curve  a  quick  dip  here  and  the  slope  increases  and the  slope  is  an  indicator  of  the

diversity gain. So, just by observing these two curves we can say that look putting two

antenna elements of the transmitter has immediately given me a diversity gain of 2.



The other important thing is to note that the slope increase means that this paths diverge.

These two curve diverge as we go along which means that at higher and higher SNR the

diversity gain is more and more. So, the diversity gain the real benefit comes at higher

SNRs then why should we stop we go ahead and look at 3 antenna systems, but this is a

case  we  have  looked  at  many  N  is  equal  to  3  cases,  but  this  is  the  rate  half  and

modulation scheme is QPSK and then we have this curve which is giving you the 4

antenna systems and then again we have some overlapping curves with 3 antenna and 4

antenna systems. So, that the symbols are plotted on top of each other shown that there

are co incidental with rate full rate and BPSK.

 So, the point is that as we go from one an antenna element at the transmitter to 2 antenna

to 3 to 4 this  clearly diversity  gain slope improves,  improves  and improves,  but the

improvement is decreasing. So, we are a humungous improvement from N is equal to 1

to N is equal to 2, yes improvement from N is equal to 2 to 3, but not so much as we saw

in the first case and we go from 3 to 4 improvement is there, but even less. So, we see

some sort of a law of diminishing return that as we go along.

So, we just cannot say that look give me as many antennas and I will pack them in my

transmitter after a while it really is not worth it.

(Refer Slide Time: 42:53)

So, this like basically summarizes that plot that we have seen just now. We have assumed

a quasi static related fading channel. So, over the symbol that we have transferred in the



channel really does not change of course, we are using ML decoding at the receiver and

we have looked at the plots and compared for N is equal to 1, 2, 3 and 4 provided there

only one receive antenna at the receiving end.

(Refer Slide Time: 43:23)

And,  this  table  summarizes  which  space  time  block  code  actually  did  we  use  what

relation scheme did we use.

So, if you see then they were six curves they were four distinct curves there were some

overlapping curves and so there is six rows here. So, this first case was the standard

BPSK which is a real constellation obviously, we cannot use paste and block codes so,

rate is not applicable. Here in the second case when 2 antenna elements are used we used

QPSK.  So,  we  had  four  symbols  to  choose  from  which  is  obviously,  a  complex

constellation and we used complex orthogonal design the only known Alamouti scheme

be used full rate.

The third one when we moved on to 3 antenna elements we used a real orthogonal design

using this generalized orthogonal design we studied full rate and then again for N is

equal to 3 we just do not have to go with a real design, I can go with a complex design

and complex design QPSK and this G 348 we have already studied in today’s lecture and

it is rate is 1 by 2 right and then we if we look at 4 antenna elements again we have an

option for real design on a complex design.



So, what it illustrates is that you have a choice, you can go with a real design, we have

looked  at  so  many  examples  or  a  complex  design,  generalized  complex  orthogonal

designs, you can have a choice for modulation schemes as well and so, for this stuck

with  simple  QPSK,  BPSK types  it  does  not  stop  you from going to  slightly  higher

modulation schemes, we have to see what do you sacrifice in terms of the rate.

(Refer Slide Time: 45:21)

So, just to bring that to a conclusion for the N is equal to 4 QPSK condition. So, if you

look at this last row right, if you have to just take this last row into consideration what

exactly did we do well we have a complex generalized complex orthogonal design given

by this thing G 448, 4 antenna elements, using 8 time slots sending only 4 symbols. So,

we have a rate of 1 by 2. This is the case we just now studied, ok. So, this is the last

curve that is coming out from the design we just talked about M is equal to 1.



(Refer Slide Time: 46:11)

Now, a couple of observations we have made some of them are earlier. It is interesting to

know that the performance for rate R is equal to 1 BPSK identical to read half QPSK, for

N is equal to 3 N 4; that is why they were overlapping, ok. This is interesting to note.

Also that the law of diminishing return was observed, right and as we go to high and

higher SNR then the diversity gain increases this improvement we have seen earlier also.

So, we can look at some numbers which are given here which tells you that exactly you

get a better diversity gain at higher SNRs.

(Refer Slide Time: 46:54)



Just try to conclude this taught by looking at now what happens if we put in 2 receive

antennas. So, N is equal to 2. So, my variable now is N, where I vary my N from 1, 2, 3,

4. So, for up to 4 transmit antennas and 2 receive antennas. Clearly, we have seen that the

diversity gain is M into N. So, if you compare the first case of single antenna at the

transmitter, but two antennas at the receiver. So, you get some gain, but again if you look

at a 2 antennas at the transmitter and 2 antenna at the receiver will get a following curve

and again at 3 antennas at the transmitter and 4 antennas at the transmitter you again get

this law of diminishing return.

Once again for 4 antenna and 3 antenna curves this either you use rate one BPSK a rate

half QPSK you have the curves coinciding. So, this cements the fact that we have a big

potential  for performance gain if  we use space time block codes  and no wonder for

newer wireless communication standards they are becoming more and more popular and

we are going to use space time block codes to improve the performance of wireless

communication systems.

(Refer Slide Time: 48:31)

 Let us look at our lecture what we have studied today. So, we revisited real and complex

orthogonal space time block codes, we talked about generalized real orthogonal designs

and generalized complex orthogonal design. Then we talked about diagonally orthogonal

space time block codes followed by relaxing the condition of single symbol decoding

and we went on to quasi orthogonal space time block codes. We then talk about what are



the design criteria, what are the design targets. And finally, we looked at the performance

curves for N equal to 1, 2, 3 and 4 for different number of receive antennas.

With that we conclude our lecture today.


