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We were talking about matched filters for the case of white noise that is signal in white noise

and signal  in non-white  noise in the later  case we call  it  the whiten matched filter  right

because we can think of matched filtering operation as composed of first whitening the noise

and then filtering it for maximization of the signal to noise ratio right. In any case the main

purpose  of  the  matched  filter  we  saw was  to  maximize  the  signal  to  noise  ratio  at  the

sampling  instant  and the manner  in  which it  achieves  this  objective  is  by weighting  the

different frequency components in accordance with the signal to noise ratio present at those

frequencies.

That is those frequencies components which have which are dominantly consisting of signal

as compare to noise or given more weightage by the filter as compare with those frequencies

components  when  the  noise  is  more  dominant  right  and  this  is  a  manner  it  achieves

maximization of the signal to noise ratio. Also we learned that the output signals to noise

ratio is a function only of this signal energy in the case of white noise that this is when signal

is of stage 1 limit white noise.

The actual signal pulse shape doesn’t contribute to the or does not matter does not affect the

output  signal  to  noise  ratio.  The only  parameter  of  the  signal  that  matters  is  the  energy

component present in the signal to ratio whereas if the noise is non-white if it is a non-white

Gaussian noise then the pulse shape will also contribute to the output signal violation and not

only its energy right. So these are a few important things that we learned last time about

natural test. We have any questions any about any of these? 

Student: sir one problem, signal to noise ratio will be define for a base of a white noise, (())

(3:15) that is the point sir, I mean that is what I am confused and signal power take A square I

mean in the constant, though a filter is it will be S of conjugate of d, so the noise part is the

actually A0 by 2 times the I mean the bandwidth, when we take N 0 by 2 only so that we get

something like.



(Refer Slide Time: 03:48)

Professor: It is actually del 10, if you remember the expression for the signal to noise ratio or

put signal to noise ratio that we (achieve) we designed was actually 2 E sub P this is the

expression  which  is  more  educational  upon N 0,  well  if  the  other  expression  is  slightly

misleading because it doesn’t bring out the energy it doesn’t bring out the units properly. This

is the one which brings out the units properly because this is energy which means actually A

square  into  the  time  duration  right,  which  is  which  should  be  which  probably  implicit

somewhere you know implicitly use it if the say something about the set signal rather be

unity or something or not.

Student: we use a five filter pulse as a V equal to 1 or E p

Professor: Right, so we said that S square t dt is equal to 1, right, so which is essentially

saying that because if S or let us say this equal to A square right

Student: the point is I mean when you substitute, S upon N for sigma square I mean A square

comes from

Professor: No, what is the problem that you are facing in your mind?

Student: sir sigma square shouldn’t be replaced by 0 by 2, but it should by 0 by 2 times of

bandwidth.

Professor: The bandwidth is implicitly built in here, let us what I, from this expression it is

not obvious but from this expression it is obvious as you can see because this is signal power

times, what is energy? Power times the pulse duration right and that is an N 0 by 2. So if you



bring it down that is N 0 by 2 into 1 by T, that is equivalent to noise power spectral density

multiplied by the bandwidth. So it is really speaking this expression is nothing but the signal

to noise ratio in the bandwidth of the matched filter  because effectively the band with a

matched filter will turn out to be 1 by T.

So it is built in into this expression. We saw it from very obvious term this expression that we

wrote otherwise but if you really interpret the signal to noise ratio properly which I tried to

tell  you last time it is really speaking the more fundamental expression is this expression

right, the output signal to noise ratio of a matched filter in the presence of white Gaussian

noise is 2 E p upon N 0, where P e, E sub P is a pulse energy ok. So 

Student: in the denominator we have energy term and in the numerator we have power term.

Professor:  No-no  will  have  power  only,  this  is  power  spectral  density  multiplied  by

bandwidth which will give you the power in that angle right and which is a power which will

really be which will appear at the output of the matched filter. 

Student:  That P E is the denominator then how does that T correspond to the bandwidth,

bandwidth didn’t correspond to bandwidth.

Professor: It has a units of bandwidth, I mean it has a units of frequency let us put it that way.

It’s a power, I think one other one of the problems that we implicitly was facing was the units

I didn’t say so right.

Student: I mean the problem still remain that, (()))(7:07)

Professor: Ok this is say this is a mathematical expression here derived and an approximate

way of interpreting it like this, that is it is effectively signal power that is being (())(7:25)

divided by the noise power in the signal bandwidth because roughly for a signal of duration T

we already discussed many times we can say most of energy will lie in a bandwidth of 1 by T

right which from that point of view from an interpretation point of view roughly speaking,

any of the questions? So is it clarify? The problem.

Now I will start my discussing some further properties of matched filters very deeply, some

of which are more or less obvious to you.
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So let me discuss a few important other properties and then we will go on to use of matched

filters for optimum de-modulation of a de-modulation of digital modulations. So some further

properties the first thing to notice and that I have been infact just talking about it. The signal

output A r t this is the signal output and we are sampling this output at T equal to let us say

zero, it could be anything it could be T equal to some arbitrary time instant T sub 0, but if we

chose that equal to 0, without any loss of generality corresponding to the matched filter H t

equal to or is it G t, S conjugate minus T.

If it was T sub 0, it would have been T knot minus T the sample value at T equal to 0 is given

by corresponding to the noise component (equal to) is given by A, the sample value, its power

is A square energy is A square T right, whatever, actually the T somehow normalize in my

discussion all though you didn’t explicitly turn out so you could say that E p is equal to A

square and I think T is probably implicitly taken to be 1 or something I don’t know how it has

come about. Let T equal to 1 but somehow the way we have been talking about things we

have made E p is equal to mod A square.

Any case the signal amplitude at the output at a sampling instant is A right, and the second

thing is that the noise variance sigma square at the output can you say anything about the

noise variance? It is equal to N sub 0 by 2 ok, actually speaking ok I will come back to that

and thirdly these are the three properties that I want to discuss together let me just mention all

the three of them first. Suppose you have the same, suppose you have two matched filters

both of which are matched to two different pulses which are mutually orthogonal to each

other. So filters matched to orthogonal signals.



Will individually, suppose the input signal contains one of those two signals to which these

two filters are matched and they are simultaneously this input is simultaneously fed to both

these matched filters right. You have let us say signal (S O t), S above t and S1 t and let us

say the input signal is (S O t) S above T and you are simultaneously feeding it to both the

filters remind you S above and S sub 1 are mutually orthogonal right. Then the outputs the

noise components of the two outputs of the two filters will be mutually un-correlated right.

So the noise outputs at T equal to 0 or T equal to T sub 0 would be un-correlated ok and I

have shown this in the form of a picture whatever we have discussed just now over here.

(Refer Slide Time: 12:17) 

Let us look what I am saying is suppose I input is the signal (A sub) A sub O t plus N t right

and you are passing it to simultaneously through two different filters matched filters, one

matched to S sub O and the other matched to S sub 1 alright these are the two matched filters

impulse responses are two matched filters and we are assuming that S sub O and S sub 1 are

mutually orthogonal right and now sample the output at T equal to 0 here sample the output at

T equal to 0 here the three properties that I have talked about are summarized here, for this

filter the signal output will be A the noise  variance is S O by 2 ok.

For this filter here what will be the signal output? Is it obvious it will be zero? Is it obvious?

From which discussion does it become obvious? Is it the discussion of previous phase class,

remember we also could interpret  the output of the matched filter  as some kind of auto-

correlation function of the signal. In this case it will be a cross-correlation function between

the input signal and the other signal and that we are assuming to be 0, because we are taking

the two signals to be orthogonal to each other.



So you can prove it very easily that the signal output will be zero here but the noise offcourse

will come out in the same way as over here with a variance N 0 by 2 right and therefore the

these are the first two properties, the third property is these two noises although they have the

same variances, the same amount of power in it, they will be mutually un-correlated that is

the noise values coming out here at the sampling instant and the value coming out here will

have no correlation with each other, they will turn out to be totally different from each other

right or will have no correlation with each other, that is only we have to put it.

If in addition the noise is Gaussian that will also imply there will be (())(14:39) independent

the noise values that you will sample although they have the same variance that they mutually

correlated and the case of Gaussian noise will also be independent.  So this is the summary of

the three properties that we discussed as far as units are concerned if you compute the energy

over T seconds this will be A square T a corresponding variance value change by N 0 by 2 t

right.

If somehow this is implied here that we have considering T equal to 1 but if T changes from 1

then this will become output will become A times Square root of T and this will become N 0

by 2 t and so on. So that the ratios will remain the same.

Student: sir how do you get the noise are un-correlated?

Yeah so let me in discuss at now we will as far as a first two properties are concern let us first

talk about that, first property is obvious that the signal output here will be A and here it will

be 0, I don’t think I need to discuss that in the light of what we have discussed earlier, this is

obvious to all of you. Let us first discuss the noise variance, R0 equal to N0 by 2, can you tell

me how it is equal to N 0 by 2? So I am taking the second property now, sigma square

Student: (())(16:02) 

Professor: Yes the sampling instant is a zero, A by root T nai, A into root T.

Student: (())(16:20) 

Professor: Because this was of same point that we discussed in couple minutes ago, 
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Here the output is really E sub P right and E sub P is A square times T right, actually the

output is square root of (E square) this is the output power and therefore the output amplitude

would be square root of this which is what I was talking about. 

Student: (())(16:59) 

Professor: Yeah that is somehow and this so that its time to correlate for you, I think I am also

getting mixed up in this energy normalization business ok I will clarify this point later, I think

I will make it very clear because somehow this point has to be link to with the other point that

I have been making there S square t equal to dt equal to 1 I will come back to this point.

I think I have mixed up this point a little bit, it is a matter of just taking care of scaling factor

which I will do for you separately let me not digress from this discussion I will come back to

this point and clarify this at some point. 



(Refer Slide Time: 17:58)

So let us look at sigma square this is the output noise variance I am interested in which is

going to be we are already seen the input power spectral density function multiply to the

transfer function matched filter, what is that transfer function in matched filter? 

Student: S conjugate of F.

Professor:  S conjugate  of F, offcourse as  far as  noise power is  concern,  we should only

multiply it by mod of mod square of that right. So we can as well right S F mod square right

and since we have taken again this that particular assumption down to the picture and since

we are  considering  white  noise now this  will  become N 0 by 2 this  and since  we have

assumed that in signal energies unity right, so this simply becomes equal to N 0 by 2 right.

Signal power is (())(18:52) ok I think that is yeah I think it’s that point is also clarified now,

we have been talking a bit confusedly about things, I think we should clarify that once for all.

When I do this, what is this? This gives me power or energy? 

Student: (Power) Energy 

Professor: It gives me energy, so when I am saying that integral S square let us say it is in

between 0 and T is equal to 1 right its effectively we are saying that the signal power signal

energy is unity. 
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So I think that is a point to note, this A square upon is not really power it is energy itself . So

that is why it’s we have taken it to be equal to S is equal to E sub . No we still I mean this is

the fact that it is energy still imply that me are making a discussion, that its power times the

time interval right.

So the all interpretations are still valid, so I think let us keep let us stick to this and then will

not bring in this route of (())(20:05) there alright will not bring in this route ok Now the third

point which Vivek has asked, how do we say that they will be un-correlated in this particular

case? That is when you pass the same signal to mutually orthogonal matched filters I call

them mutually orthogonal matched filters because they are matched to mutually orthogonal

signals  and  the  corresponding  output  samples  at  the  sampling  instance  would  be  un-

correlated, let us quickly look at that.
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Let us take the third property, what is the, let us write down the expression for the noise

output, it will be equal to let me call this N sub O, right or just call it N prime and it is a

simply N the input noise convolved with the impulse response in the matched filter which

will be G t minus zeta d zeta alright, offcourse and we are interested in looking at the noise

samples at specific time instant corresponding to T equal to zero alright. Let me call this for

one of the signals or one of the filters let us say the first filter I will call it N sub 1 and for the

second filter the output at the same sampling instant I will call N sub 2 alright.

So what will be expression for N sub 1, it will be N zeta and offcourse G is your S1 or alright

let us say S1 yes conjugate also and I have to put T equal to 0 right and similarly N sub O

alright it will become plus eta alright, here he is saying G t is equal to

Student: G of t is equal S conjugate of P O  minus t (())(22:52)

Professor:  It  is  ok,  right  and  this  is  the  definition  of  matched  filter  in  time  domain  we

discussed last time, please check up your last time notes you will see it there ok and for the

second filter  output input is same right the noise input is same only the matched filter is

different which is S sub O alright, and look at the expected value of N0 into N1 conjugate if

you do that it is very easy to check that will be 0.
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Let’s look at that expected value of N0 N1 conjugate that is our cross correlation between the

two noise output samples can be written as S1 zeta into S0 zeta one of them will be conjugate

the other will be well I have taken conjugating N1 star so this will be without conjugation and

this will become with conjugation isn’t it?

If you conjugate N1 star this will become N star and conjugate S1 alright if you take use that

double integral and I have taken the expectation operator inside the integral because it is a

linear operator and this will become just a second there should be something that we have to

be careful about when we are when you are using two integrals, let me call one of them as

zeta 1 and the other as zeta O, right, or will be zeta and zeta prime it will be simpler, this will

be zeta it doesn’t really matter.

So expected value of N zeta into N zeta prime M conjugate zeta prime, d zeta d zeta prime I

have to use two dummy variables right because I am considering two integrals, what is this

expected value? This is N 0 by 2 into, into what? This is white noise, so what is the auto-

correlation function? N 0 by 2 delta zeta minus zeta prime alright and that obviously now

using the properties of impulse function you can write this as a single integral right, you can

eliminate  zeta  prime we can put  zeta  prime equal  to  zeta  itself  because that  is  the only

situation where this integral be non-zero with respect to zeta prime and what is this quantity? 

Assuming that the two signals are mutually orthogonal this is equal to zero alright. So this is

how the third property comes about. Now this was a very useful property to take note of

when we are going to work with digital modulations schemes which implies more than one



signal right particularly one more than one set of orthogonal signals right and we do have

modulating  digital  modulations  schemes  or  signalling  schemes  which  are  based  on

orthogonal signals and therefore we are going to have to imply orthogonal matched filters and

this property will be useful to remember when we are analysing the outputs of such matched

filters alright.

So that was to some properties of matched filters so further properties of matched filters and

finally before leaving this properties of matched filters

(Refer Slide Time: 28:04) 

One last point that I like to discuss is regarding passband matched filters because will have

both  baseband  as  well  as  passband  modulations  to  worry  about.  When  I  say  passband

matched filters I am essentially referring to the situation when our input pulse may not be a

baseband pulse it maybe a passband signal passband pulse which means it is embedded onto

a carrier alright.

So what kind of matched filter will have? Offcourse the definition will be the same but lastly

I would like to appreciate both mathematically as well as physically what these, how these

qualities can be specified and what will they look like. So typical passband pulse we can

write as if you remember as one (())(29:02) real part modulating a cosine carrier as well as in

imaginary part modulating a sinusoidal carrier at the frequency F sub O, right, so what can

you say about the matched filter? Well if it is a real signal like it is over here will be simply S

minus T right which therefore can be written as S R so this will be the matched filter this is

the passband pulse this is the corresponding matched filter.



Just put T replace T with minus T everywhere this will remain cosine 2 Pie of knot T and this

will become minus SI S sub I minus T sine 2 pie this will become actually plus right. You can

as well alternatively think of the signal S t just to recapitulate for you as a complex envelop

like that right, isn’t it? Corresponding to this we can denote this passband pulse by a complex

signal which is baseband essentially in nature and the corresponding matched filter will then

be essentially S minus T which will be S R t it will be S conjugate minus t right, it will be S

conjugate  minus  t  which  will  be  S  r  minus  t  minus  J  SI  minus  t  ok.  So  this  is  the

mathematical description of the passband matched filter both at the passband in the passband

notation as well as in the complex notation ok.

(Refer Slide Time: 31:28) 

Physically this is the I have illustrated or depicted this situation for the case when SI t is zero

S sub I t is zero
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That  is  we are considering a  passband pulse with only cosinusoidal  carrier  to  which the

baseband pulse maybe modulating alright. So obviously the corresponding matched filter will

be simply this because only the first part of it is there and the output of this I like you to show

that the input is this pulse S t cosine 2 Pie of knot t, S t is real and infact this whole signal is

real  and well here also the whole signal is real but I am making a quadrature component zero

for this picture here right.

I am essentially taking S t equal to S r t equal to sine 2 Pie of knot T infact I am removing this

S sub r also I am just calling the input signal as some baseband pulse into cosine 2 Pie of knot

T the matched filter corresponding to that will have an impulse response S minus T cosine 2

Pie of knot t and this is what I like you to prove when you pass this through this the output

will be again a passband pulse who’s envelop will now look like this, it  is a convolution

between the baseband pulse S t here and the baseband pulse S minus t this modulating the

carrier cosine 2 Pie of knot t right.

Input is a passband signal the filter is obviously a passband filter it is now tune it has its

passband around F knot right it is obvious from here isn’t it? The output also will be passband

pulse whose envelope will be given by St conjugate S minus t not really envelope here the

output will be this into this right. 
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Now let me illustrate this, this maybe your passband pulse right, suppose it was a baseband

rectangular pulse, what would have been the matched filter output? It is the auto-correlation

function of the input signal right, so what would be the matched filter output corresponding to

this? Between 0 to 2 T, right, the peak coming at T right.

The same thing when you do in the passband domain that is when you consider passband

pulse and you convolve with itself  or will  not itself  but with it  is matched filter  impulse

response,  the  output  will  be  looking  like  this  ok  with  the  envelope  being  the  same  as

corresponds  to  the  envelope  of  this  triangular  pulse  which  will  be  triangle  right  that

modulating the carrier frequency same frequency that’s is above.

Student: I wonder a maximum of (())(34:43) the lower case come s at zero 

Professor: Well depends on wave and sampling I am taking a casual filter here but if you are

taking the same filter that we are considering earlier yes it will say minus T to plus T that is

when we are assuming that the peak occurs at T equal to zero. It depends on where you make

the peak occur right, by introducing delay I can always make it occur somewhere else right.

So that is really not very important absolute time instance are not important right. For this

discussion if you say zero to T then it is better to call it zero to 2 to keep the causality in

picture but if causality is not a point then I can write minus T to plus (T)

Student: (())(35:30)



Professor:  Yes,  this  is  a  very interesting question and I  will  just  come back to that.  The

answer  is  that  no  matter  whether  you  are  considering  the  in  phase  component  other

quadrature phase component since the peak has to occur here. See in general the output will

be let us look at the complex representation in general the output of the matched filter will

not be complex that is will contain both in phase as well as quadrature phase components

right. 

But at the sampling instant where the peak occurs T equal to zero for the complex notation

this will be purely real for the quadrature notation the quadrature component here will be

zero,  there  will  be  no  sinusoidal  component  at  T equal  to  zero  they  look  like  this  but

offcourse the details will change on as you go away from zero, I will talk about this point (in

a minute).

So is this ok, this is how the passband situation will be the input pulse of this kind will get

modified  to  a  pulse  of  this  kind  after  matched  filtering  corresponding  to  the  baseband

situation here right after matched filtering will get this kind of thing. 
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Now we could as well implement this passband filter by at baseband by first taking this pulse

to baseband that  is  translating the spectrum of this  pulse to  baseband by multiplying the

cosine to pie of knot T during baseband matched filtering and then re-translating it back to

passband.

If we need the thing I mean it depends on what you want, right my purpose is to do matched

filtering of this pulse right and to produce the corresponding output one way is to have build



that passband matched filter with this impulse response. Another way is first to bring the

pulse to baseband by down translating the frequency, during matched filtering at baseband

and then taking it back to the end to the required frequency right. It depends on whether this

type required or not, will depend on the application alright to which you are trying this.

Student: (())(37:55)

Professor: Ok that is a good question, that will not be required because afterall  what is a

purpose of that low pass filter? To eliminate the 2 F knot component, that will be eliminated

by S minus t itself because S minus t is a impulse response of it baseband filter essentially a

low pass filter. If S t is a low pass pulse, right, so it will automatically eliminate the 2 F O

component,  that  is  a  primary purpose of  putting that  low pass filter  to  remove a 2 F O

component resulting from this multiplication that will be carried out by this matched filter

itself.

So there is no need to show I separate to pass filter, alright.

(Refer Slide Time: 38:58) 

So finally I will just comeback to return to Varun’s point that he made by means of a remark

that is in general the output let me consider a complex notation, for a passband pulse I can

represent it by a complex input distant pulse right the corresponding matched filter will also

be  a  complex valued impulse  response  alright.  The corresponding output  in  general  will

therefore be complex because it is going to be convolution of two complex functions complex

valued functions.



Input is a complex pulse shape, the impulse response is a complex valued impulse response,

the output in general is complex, right, but at the sampling instant, what is going to happen?

Is it going to remain complex at the sampling instant, what is the output? We have seen that

earlier, it is mod square is A square and its value is A, is always going to be real. At the

sampling instant the output is going to be proportional to the energy of the signal right. At the

sampling instant the output is not complex it is real. So although the example that I have

showed you in these two pictures was for the case where the SI component was missing right

and the fact that it is going to be a real at the sampling instant is always going to be true right.
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That is this output is going to peek with a real value at this point as you go away from the

peak will have both real as well as imaginary values non-zero imaginary and zero values

offcourse then you should draw two waveforms rather than one. The imaginary waveform

will go through a zero at T equal to zero right. It will be a slightly different kind of function.

So  that  when  you  take  the  magnitude  square  at  T equal  to  zero,  the  magnitude  that  is

contributed largely infact only by the real part and there is no contribution from a imaginary

part. 

So that I hope answers your question that is, for a general baseband passband signal which

has both real as well as imaginary components or in phase an quadrature components at the

sampling instant the contribution will be only the in phase components, will come only from

the in phase component and not from the quadrature component. Will come in the form of a

what in phase component. Output will be only in phase at that point. Offcourse contribution

will be there from both, any questions? Ok



So with these properties of matched filters  in the background we now come to our main

business and that is de-modulation. Before I come to that if there is any doubt of any kind let

us discuss that briefly and get us clarify. Anyone has any question on the various properties of

matched filters we have discussed so far? No questions? So let us therefore come to digital

modulations  and the  first  class  of  digital  de-modulation  we consider  or  binary  (de-mod)

binary modulations (and)

(Refer Slide Time: 42:46)

So I  will  discuss  the  subject  of  coherent  de-modulation  for  binary  waveforms or  binary

signals ok and it will be kind of convenient to restrict our attention merely to the passband

modulations.

Although baseband modulations also will consider because once we have the results or the

discussion for passband modulations the corresponding result for baseband modulations now

become  trivial  particularly  you  know  the  fact  that  even  a  passband  modulation  can  be

expressed  in  terms  of  a  complex  baseband  representation.  So now the  general  passband

waveform received waveform that  you will  get  at  the receiver  or in general  we had just

discussed a few minutes ago will be this ok, whatever difference I have not talking about V t,

the received signal which contains both the transmitted signal plus noise right.

But since we are assuming that everything is around I want some frequency of F knot even

the noise can be represented in the same quadrature form right. So V sub R contains S sub R

plus N sub R and V sub I contains S sub I plus N sub I ok the, everything else is same as we

discussed a few minutes ago except for the presence of theta, what does this signify? This



signifies that you might have transmitted S sub R cosine 2 Pie of T minus S sub I sine 2 pie of

knot T but what you will receive is that plus a phase shift the carrier will have undergone

some phase shift, that is right.

So it is same, I have put it same, yes offcourse, because afterall what is this? This is just a

quadrature representation, you could as well think of this as some envelope R t into cosine 2

Pie of knot t plus theta right, this is afterall different way of writing this. Basically the carrier

has undergone its phase shift and its quadrature for this is how it will look like. This should

be theta plus Phi T I am sorry, the general modulation is given in terms of R t and Phi t right

for example you know if it is binary PSK phi t will be plus minus pie right depending on the

input pulse sequence this is envelope it maybe rectangular it could be anything and it could

be represented the quadrature form like this.

The theta is the phase shift that has taken place in the carrier during transmission right yes

Deepankar what is your question? 

Student: (())(46:16)

Professor: Yes it will effect, this envelope actually see depends on what you are talking about.

If this is purely signal then this will be purely signal attributes but if contains both signal and

noise then those attributes will also appear here.

Student: (())(46:35)

Professor: That is right but therefore if V R contains noise if V R is S sub R plus N sub R

right, then R t will be whatever that is square of that plus square of this that is all they are, we

are assuming that this contains both signal plus noise so therefore envelope and phase are

both noisy here right then are the two transmitted values they will degraded by noise and this

is a noisy envelope and this is a noisy phase but in addition to that noisy phase which is a

effect of noise we assuming the presence of a phase shift theta which is essentially true with

the fact that the transmitter and the receiver are at physically different locations and therefore

the carrier  in  proceeding from one place  to  another  is  associate  with the time delay  and

different phase shift right, was it clear?

This source of this  phase shift  is the physical  separation between the transmitter  and the

receiver right. You might have transmitted the carrier with zero phase but due to propagation

delay the received carrier will be with some non-zero phase whose value may or may not be



known to you right, in general it is not known but still even though in general theta is not

known still we differentiate between two situations for de-modulation that is theta known and

theta unknown. How can theta be known? Is can be known provided at the receiver you have

a carrier recovery circuit, phase estimation circuit right.

If you have a carrier recovery circuit whose purpose is to find out the phase of the incoming

carrier  then you can assume it  to be known. If it  does its  job properly alright  so for the

purpose  of  the  discussion  this  was  the  reason  I  want  to  explain  the  term  coherent  de-

modulation with each are familiar in your (())(48:38) communication process but I want to

reemphasize that here for us. When we talked about coherent de-modulation what we are

essentially saying that theta is known to the de-modulator. That how can it be known? As I

said just now, maybe by carrier recovery circuit.

(Refer Slide Time: 49:08)

So which is a separate task which I will not discuss at the moment but when we talk about

coherent de-modulation it is therefore implied that we have a signalization circuit which we

call the carrier recovery circuit whose job is to obtain the true value of theta as it is coming in

ok. In case for some reason it is not either practical to do it or expensive to do it right, will

have a situation where theta is not known. Suppose we have a situation where we cannot

make a carrier recovery circuit work properly therefore it is not practical to in that situation to

now to find out the value of theta because our carrier recovery circuit doesn’t work.

Or it may turn out that we may will want a very cheap implementation of the receiver in

which we don’t want to do a phase estimation an extra job, then we have the situation of what



we call non-coherent de-modulation. You are familiar with these terms nothing new for you

so coherent or non-coherent has to do away a carrier phase being known or carrier phase

being  unknown.  Now  suppose  theta  is  known  because  at  the  moment  I  am  discussing

coherent  de-modulation  right  I  will,  digital  communication  except  for a few very special

cases most of the time will be talking about coherent de-modulation. There will be a few

situations like F S t where we can talk about non-coherent de-modulation.

But in all other cases like various versions of PSK or combine amplitude phase shift keying

because some information is present in the phase which just cannot afford to do non-coherent

de-modulation right. Except in FSK where information is not in phase but in frequencies right

in that case you can think of doing non-coherent de-modulation, but if the information itself

is somehow in buried in the phase either directly or implicitly then there is no question of

using non-coherent de-modulation right, so that point you must remember.

Therefore most of the cases will be discussing the coherent de-modulators here and when

theta is known we can write the received signal in its complex form as V sub R t plus J times

V sub I t, so how do I show the phase shift here in the received signal in the complex notation

into E to the power J theta and as I said if it is perfectly known I can remove the effect of E to

the power J theta by simply multiplying the received signal with E to the power minus J theta

right and from then onwards I can assume as if I have received the signal with no phase shift.

So we can as well assume theta to be zero ok.

So if I having a coherent de-modulator based on the fact that I have a carrier recovery circuit

what basically I do is from the carrier recovery circuit I estimate the phase theta and then use

that estimated phase to multiply V t by E to the power minus J theta so as to remove the effect

of theta, somebody is talking a bit too much please it will disturbs me a little bit quite. So

from then onwards from here onwards I will assume that theta is zero ok and offcourse we

can do so in coherent de-modulator. 

Now let us with this introduction to coherent de-modulators let us briefly come to or it is a

good stopping point will stop here.


